import streamlit as st import torch import bitsandbytes import accelerate import scipy from PIL import Image import torch.nn as nn from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration from my_model.object_detection import detect_and_draw_objects from my_model.captioner.image_captioning import get_caption from my_model.utilities import free_gpu_resources # Placeholder for undefined functions def load_caption_model(): st.write("Placeholder for load_caption_model function") return None, None def answer_question(image, question, model, processor): return "Placeholder answer for the question" def detect_and_draw_objects(image, model_name, threshold): return image, "Detected objects" def get_caption(image): return "Generated caption for the image" def free_gpu_resources(): pass # Main function def main(): st.sidebar.title("Navigation") selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"]) if selection == "Home": display_home() elif selection == "Dissertation Report": display_dissertation_report() elif selection == "Evaluation Results": display_evaluation_results() elif selection == "Dataset Analysis": display_dataset_analysis() elif selection == "Run Inference": run_inference() elif selection == "Object Detection": run_object_detection() def display_home(): st.title("MultiModal Learning for Knowledge-Based Visual Question Answering") st.write("Home page content goes here...") def display_dissertation_report(): st.title("Dissertation Report") st.write("Click the link below to view the PDF.") st.download_button( label="Download PDF", data=open("Files/Dissertation Report.pdf", "rb"), file_name="example.pdf", mime="application/octet-stream" ) def display_evaluation_results(): st.title("Evaluation Results") st.write("This is a Place Holder until the contents are uploaded.") def display_dataset_analysis(): st.title("OK-VQA Dataset Analysis") st.write("This is a Place Holder until the contents are uploaded.") def run_inference(): st.title("Image-based Q&A App") # Image-based Q&A functionality image_qa_app() def run_object_detection(): st.title("Object Detection") # Object Detection functionality # ... Implement your code for this section ... def image_qa_app(): # Initialize session state for storing images and their Q&A histories if 'images_qa_history' not in st.session_state: st.session_state['images_qa_history'] = [] # Button to clear all data if st.button('Clear All'): st.session_state['images_qa_history'] = [] st.experimental_rerun() # Image uploader uploaded_image = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"]) if uploaded_image is not None: image = Image.open(uploaded_image) current_image_key = uploaded_image.name # Use image name as a unique key # Check if the image is already in the history if not any(info['image_key'] == current_image_key for info in st.session_state['images_qa_history']): st.session_state['images_qa_history'].append({ 'image_key': current_image_key, 'image': image, 'qa_history': [] }) # Display all images and their Q&A histories for image_info in st.session_state['images_qa_history']: st.image(image_info['image'], caption='Uploaded Image.', use_column_width=True) for q, a in image_info['qa_history']: st.text(f"Q: {q}\nA: {a}\n") # If the current image is being processed if image_info['image_key'] == current_image_key: # Unique keys for each widget question_key = f"question_{current_image_key}" button_key = f"button_{current_image_key}" # Question input for the current image question = st.text_input("Ask a question about this image:", key=question_key) # Get Answer button for the current image if st.button('Get Answer', key=button_key): # Process the image and question answer = get_answer(image_info['image'], question) # Implement this function image_info['qa_history'].append((question, answer)) st.experimental_rerun() # Rerun to update the display def get_answer(image, question): # Implement the logic to process the image and question, and return the answer return "Sample answer based on the image and question." if __name__ == "__main__": main()