import pandas as pd import copy import streamlit as st from my_model.gen_utilities import free_gpu_resources from my_model.KBVQA import KBVQA, prepare_kbvqa_model class StateManager: def __init__(self): # self.initialize_state() def initialize_state(self): if 'images_data' not in st.session_state: st.session_state['images_data'] = {} if 'model_settings' not in st.session_state: st.session_state['model_settings'] = {'selected_method': None, 'detection_model': None, 'confidence_level': None} if 'kbvqa' not in st.session_state: st.session_state['kbvqa'] = None def update_model_settings(self, detection_model=None, confidence_level=None, selected_method=None): if detection_model is not None: st.session_state['model_settings']['detection_model'] = detection_model if confidence_level is not None: st.session_state['model_settings']['confidence_level'] = confidence_level if selected_method is not None: st.session_state['model_settings']['selected_method'] = selected_method def set_slider_value(self, text, min_value, max_value, value, step, slider_key_name): return st.slider(text, min_value, max_value, value, step, key=slider_key_name) def check_settings_changed(self, current_selected_method, current_detection_model, current_confidence_level): return (st.session_state['model_settings']['detection_model'] != current_detection_model or st.session_state['model_settings']['confidence_level'] != current_confidence_level or st.session_state['model_settings']['selected_method'] != current_selected_method) def display_model_settings(self): st.write("### Current Model Settings:") st.table(pd.DataFrame(st.session_state['model_settings'], index=[0])) def display_session_state(self): st.write("### Current Session State:") data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()] df = pd.DataFrame(data) st.table(df) def load_model(self): """Load the KBVQA model with specified settings.""" try: free_gpu_resources() st.text("Loading the model, this should take no more than a few minutes, please wait...") st.session_state['kbvqa'] = prepare_kbvqa_model(st.state_session.detection_model) st.session_state['kbvqa'].detection_confidence = st.state_session.confidence_level #self.update_model_settings(detection_model, confidence_level) st.text("Model is ready for inference.") free_gpu_resources() except Exception as e: st.error(f"Error loading model: {e}") def get_model(self): """Retrieve the KBVQA model from the session state.""" return st.session_state.get('kbvqa', None) def is_model_loaded(self): return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None def reload_detection_model(self, detection_model, confidence_level): try: free_gpu_resources() if self.is_model_loaded(): prepare_kbvqa_model(detection_model, only_reload_detection_model=True) st.session_state['kbvqa'].detection_confidence = confidence_level self.update_model_settings(detection_model, confidence_level) free_gpu_resources() except Exception as e: st.error(f"Error reloading detection model: {e}") # New methods to be added def process_new_image(self, image_key, image, kbvqa): if image_key not in st.session_state['images_data']: st.session_state['images_data'][image_key] = { 'image': image, 'caption': '', 'detected_objects_str': '', 'qa_history': [], 'analysis_done': False } def analyze_image(self, image, kbvqa): img = copy.deepcopy(image) caption = kbvqa.get_caption(img) image_with_boxes, detected_objects_str = kbvqa.detect_objects(img) return caption, detected_objects_str, image_with_boxes def add_to_qa_history(self, image_key, question, answer): if image_key in st.session_state['images_data']: st.session_state['images_data'][image_key]['qa_history'].append((question, answer)) def get_images_data(self): return st.session_state['images_data'] def update_image_data(self, image_key, caption, detected_objects_str, analysis_done): if image_key in st.session_state['images_data']: st.session_state['images_data'][image_key].update({ 'caption': caption, 'detected_objects_str': detected_objects_str, 'analysis_done': analysis_done })