import argparse import json import logging import os import sys from pathlib import Path import comet_ml logger = logging.getLogger(__name__) FILE = Path(__file__).resolve() ROOT = FILE.parents[3] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH from train import train from utils.callbacks import Callbacks from utils.general import increment_path from utils.torch_utils import select_device # Project Configuration config = comet_ml.config.get_config() COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5") def get_args(known=False): parser = argparse.ArgumentParser() parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path") parser.add_argument("--cfg", type=str, default="", help="model.yaml path") parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path") parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path") parser.add_argument("--epochs", type=int, default=300, help="total training epochs") parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch") parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)") parser.add_argument("--rect", action="store_true", help="rectangular training") parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training") parser.add_argument("--nosave", action="store_true", help="only save final checkpoint") parser.add_argument("--noval", action="store_true", help="only validate final epoch") parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor") parser.add_argument("--noplots", action="store_true", help="save no plot files") parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations") parser.add_argument("--bucket", type=str, default="", help="gsutil bucket") parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"') parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%") parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class") parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer") parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode") parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name") parser.add_argument("--name", default="exp", help="save to project/name") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") parser.add_argument("--quad", action="store_true", help="quad dataloader") parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler") parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon") parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)") parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2") parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)") parser.add_argument("--seed", type=int, default=0, help="Global training seed") parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify") # Weights & Biases arguments parser.add_argument("--entity", default=None, help="W&B: Entity") parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='W&B: Upload data, "val" option') parser.add_argument("--bbox_interval", type=int, default=-1, help="W&B: Set bounding-box image logging interval") parser.add_argument("--artifact_alias", type=str, default="latest", help="W&B: Version of dataset artifact to use") # Comet Arguments parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.") parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.") parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.") parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.") parser.add_argument( "--comet_optimizer_workers", type=int, default=1, help="Comet: Number of Parallel Workers to use with the Comet Optimizer.", ) return parser.parse_known_args()[0] if known else parser.parse_args() def run(parameters, opt): hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]} opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) opt.batch_size = parameters.get("batch_size") opt.epochs = parameters.get("epochs") device = select_device(opt.device, batch_size=opt.batch_size) train(hyp_dict, opt, device, callbacks=Callbacks()) if __name__ == "__main__": opt = get_args(known=True) opt.weights = str(opt.weights) opt.cfg = str(opt.cfg) opt.data = str(opt.data) opt.project = str(opt.project) optimizer_id = os.getenv("COMET_OPTIMIZER_ID") if optimizer_id is None: with open(opt.comet_optimizer_config) as f: optimizer_config = json.load(f) optimizer = comet_ml.Optimizer(optimizer_config) else: optimizer = comet_ml.Optimizer(optimizer_id) opt.comet_optimizer_id = optimizer.id status = optimizer.status() opt.comet_optimizer_objective = status["spec"]["objective"] opt.comet_optimizer_metric = status["spec"]["metric"] logger.info("COMET INFO: Starting Hyperparameter Sweep") for parameter in optimizer.get_parameters(): run(parameter["parameters"], opt)