Upload 2 files
Browse filescompleted the detection code and updated some utils functions
- My_Model/object_detection.py +162 -0
- My_Model/utilities.py +277 -0
My_Model/object_detection.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import os
|
6 |
+
from utilities import get_path, show_image, show_image_with_matplotlib
|
7 |
+
import transformers
|
8 |
+
|
9 |
+
class ObjectDetector:
|
10 |
+
def __init__(self):
|
11 |
+
self.model = None
|
12 |
+
self.processor = None
|
13 |
+
self.model_name = None
|
14 |
+
|
15 |
+
def load_model(self, model_name='detic', pretrained=True, model_version='yolov5s'):
|
16 |
+
"""
|
17 |
+
Load the specified object detection model.
|
18 |
+
:param model_name: Name of the model to load.
|
19 |
+
:param pretrained: Boolean indicating if pretrained model should be used.
|
20 |
+
:param model_version: Version of the model, applicable for YOLOv5.
|
21 |
+
"""
|
22 |
+
self.model_name = model_name
|
23 |
+
if model_name == 'detic':
|
24 |
+
self.load_detic_model(pretrained)
|
25 |
+
elif model_name == 'yolov5':
|
26 |
+
self.load_yolov5_model(pretrained, model_version)
|
27 |
+
else:
|
28 |
+
raise ValueError("Unsupported model name")
|
29 |
+
|
30 |
+
|
31 |
+
def load_detic_model(self, pretrained):
|
32 |
+
"""Load the Detic model."""
|
33 |
+
try:
|
34 |
+
model_path = get_path('deformable-detr-detic', 'Models')
|
35 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
36 |
+
self.processor = AutoImageProcessor.from_pretrained(model_path)
|
37 |
+
self.model = AutoModelForObjectDetection.from_pretrained(model_path)
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error loading Detic model: {e}")
|
40 |
+
|
41 |
+
|
42 |
+
def load_yolov5_model(self, pretrained, model_version):
|
43 |
+
"""Load the YOLOv5 model."""
|
44 |
+
try:
|
45 |
+
model_path = get_path('yolov5', 'Models')
|
46 |
+
if model_path and os.path.exists(model_path):
|
47 |
+
with os.scandir(model_path) as main_dir:
|
48 |
+
self.model = torch.hub.load(model_path, model_version, pretrained=pretrained, source="local")
|
49 |
+
else:
|
50 |
+
self.model = torch.hub.load('ultralytics/yolov5', model_version, pretrained=pretrained)
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error loading YOLOv5 model: {e}")
|
53 |
+
|
54 |
+
|
55 |
+
def process_image(self, image_path: str) -> Image.Image:
|
56 |
+
"""
|
57 |
+
Process the image from the given path.
|
58 |
+
:param image_path: Path to the image file.
|
59 |
+
:return: Processed image.
|
60 |
+
"""
|
61 |
+
with Image.open(image_path) as image:
|
62 |
+
return image.convert("RGB")
|
63 |
+
|
64 |
+
|
65 |
+
def detect_objects(self, image: Image.Image, threshold: float = 0.4):
|
66 |
+
"""
|
67 |
+
Detect objects in the given image.
|
68 |
+
:param image: Image in which to detect objects.
|
69 |
+
:param threshold: Detection threshold.
|
70 |
+
:return: Tuple of detected objects string and list.
|
71 |
+
"""
|
72 |
+
detected_objects_str, detected_objects_list = "", []
|
73 |
+
if self.model_name == 'detic':
|
74 |
+
detected_objects_str, detected_objects_list = self.detect_with_detic(image, threshold)
|
75 |
+
elif self.model_name == 'yolov5':
|
76 |
+
detected_objects_str, detected_objects_list = self.detect_with_yolov5(image, threshold)
|
77 |
+
return detected_objects_str.strip(), detected_objects_list
|
78 |
+
|
79 |
+
|
80 |
+
def detect_with_detic(self, image: Image.Image, threshold: float):
|
81 |
+
"""Detect objects using Detic model."""
|
82 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
83 |
+
outputs = self.model(**inputs)
|
84 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
85 |
+
results = self.processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[
|
86 |
+
0]
|
87 |
+
|
88 |
+
detected_objects_str = ""
|
89 |
+
detected_objects_list = []
|
90 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
91 |
+
if score >= threshold:
|
92 |
+
label_name = self.model.config.id2label[label.item()]
|
93 |
+
box_rounded = [round(coord, 2) for coord in box.tolist()]
|
94 |
+
certainty = round(score.item() * 100, 2)
|
95 |
+
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n"
|
96 |
+
detected_objects_list.append((label_name, box_rounded, certainty))
|
97 |
+
return detected_objects_str, detected_objects_list
|
98 |
+
|
99 |
+
|
100 |
+
def detect_with_yolov5(self, image: Image.Image, threshold: float):
|
101 |
+
"""Detect objects using YOLOv5 model."""
|
102 |
+
|
103 |
+
cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
104 |
+
results = self.model(cv2_img)
|
105 |
+
|
106 |
+
detected_objects_str = ""
|
107 |
+
detected_objects_list = []
|
108 |
+
for *bbox, conf, cls in results.xyxy[0]:
|
109 |
+
if conf >= threshold:
|
110 |
+
label_name = results.names[int(cls)]
|
111 |
+
box_rounded = [round(coord.item(), 2) for coord in bbox] # Convert each tensor to float and round
|
112 |
+
certainty = round(conf.item() * 100, 2)
|
113 |
+
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n"
|
114 |
+
detected_objects_list.append((label_name, box_rounded, certainty))
|
115 |
+
return detected_objects_str, detected_objects_list
|
116 |
+
|
117 |
+
|
118 |
+
def draw_boxes(self, image: Image.Image, detected_objects: list, show_confidence: bool = True) -> Image.Image:
|
119 |
+
"""
|
120 |
+
Draw bounding boxes around detected objects in the image.
|
121 |
+
:param image: Image on which to draw.
|
122 |
+
:param detected_objects: List of detected objects.
|
123 |
+
:param show_confidence: Boolean to show confidence scores.
|
124 |
+
:return: Image with drawn boxes.
|
125 |
+
"""
|
126 |
+
draw = ImageDraw.Draw(image)
|
127 |
+
try:
|
128 |
+
font = ImageFont.truetype("arial.ttf", 15)
|
129 |
+
except IOError:
|
130 |
+
font = ImageFont.load_default()
|
131 |
+
|
132 |
+
colors = ["red", "green", "blue", "yellow", "purple", "orange"]
|
133 |
+
label_color_map = {}
|
134 |
+
|
135 |
+
for label_name, box, score in detected_objects:
|
136 |
+
if label_name not in label_color_map:
|
137 |
+
label_color_map[label_name] = colors[len(label_color_map) % len(colors)]
|
138 |
+
|
139 |
+
color = label_color_map[label_name]
|
140 |
+
draw.rectangle(box, outline=color, width=3)
|
141 |
+
|
142 |
+
label_text = f"{label_name}"
|
143 |
+
if show_confidence:
|
144 |
+
label_text += f" ({round(score, 2)}%)"
|
145 |
+
draw.text((box[0], box[1]), label_text, fill=color, font=font)
|
146 |
+
|
147 |
+
return image
|
148 |
+
|
149 |
+
|
150 |
+
if __name__=="__main__":
|
151 |
+
|
152 |
+
detector = ObjectDetector()
|
153 |
+
image_path = get_path('horse.jpg', 'Sample_Images')
|
154 |
+
|
155 |
+
detector.load_model('yolov5') # pass either 'detic' or 'yolov5'
|
156 |
+
|
157 |
+
image = detector.process_image(image_path)
|
158 |
+
detected_objects_string, detected_objects_list = detector.detect_objects(image, threshold=0.2)
|
159 |
+
image_with_boxes = detector.draw_boxes(image, detected_objects_list, show_confidence=False)
|
160 |
+
print(detected_objects_string)
|
161 |
+
show_image(image_with_boxes)
|
162 |
+
#show_image_with_matplotlib(image_path)
|
My_Model/utilities.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from collections import Counter
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import IPython.display
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from IPython import get_ipython
|
10 |
+
import sys
|
11 |
+
|
12 |
+
|
13 |
+
class VQADataProcessor:
|
14 |
+
"""
|
15 |
+
A class to process OKVQA dataset.
|
16 |
+
|
17 |
+
Attributes:
|
18 |
+
questions_file_path (str): The file path for the questions JSON file.
|
19 |
+
annotations_file_path (str): The file path for the annotations JSON file.
|
20 |
+
questions (list): List of questions extracted from the JSON file.
|
21 |
+
annotations (list): List of annotations extracted from the JSON file.
|
22 |
+
df_questions (DataFrame): DataFrame created from the questions list.
|
23 |
+
df_answers (DataFrame): DataFrame created from the annotations list.
|
24 |
+
merged_df (DataFrame): DataFrame resulting from merging questions and answers.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, questions_file_path, annotations_file_path):
|
28 |
+
"""
|
29 |
+
Initializes the VQADataProcessor with file paths for questions and annotations.
|
30 |
+
|
31 |
+
Parameters:
|
32 |
+
questions_file_path (str): The file path for the questions JSON file.
|
33 |
+
annotations_file_path (str): The file path for the annotations JSON file.
|
34 |
+
"""
|
35 |
+
self.questions_file_path = questions_file_path
|
36 |
+
self.annotations_file_path = annotations_file_path
|
37 |
+
self.questions, self.annotations = self.read_json_files()
|
38 |
+
self.df_questions = pd.DataFrame(self.questions)
|
39 |
+
self.df_answers = pd.DataFrame(self.annotations)
|
40 |
+
self.merged_df = None
|
41 |
+
|
42 |
+
def read_json_files(self):
|
43 |
+
"""
|
44 |
+
Reads the JSON files for questions and annotations.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
tuple: A tuple containing two lists: questions and annotations.
|
48 |
+
"""
|
49 |
+
with open(self.questions_file_path, 'r') as file:
|
50 |
+
data = json.load(file)
|
51 |
+
questions = data['questions']
|
52 |
+
|
53 |
+
with open(self.annotations_file_path, 'r') as file:
|
54 |
+
data = json.load(file)
|
55 |
+
annotations = data['annotations']
|
56 |
+
|
57 |
+
return questions, annotations
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def find_most_frequent(my_list):
|
61 |
+
"""
|
62 |
+
Finds the most frequent item in a list.
|
63 |
+
|
64 |
+
Parameters:
|
65 |
+
my_list (list): A list of items.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
The most frequent item in the list. Returns None if the list is empty.
|
69 |
+
"""
|
70 |
+
if not my_list:
|
71 |
+
return None
|
72 |
+
counter = Counter(my_list)
|
73 |
+
most_common = counter.most_common(1)
|
74 |
+
return most_common[0][0]
|
75 |
+
|
76 |
+
def merge_dataframes(self):
|
77 |
+
"""
|
78 |
+
Merges the questions and answers DataFrames on 'question_id' and 'image_id'.
|
79 |
+
"""
|
80 |
+
self.merged_df = pd.merge(self.df_questions, self.df_answers, on=['question_id', 'image_id'])
|
81 |
+
|
82 |
+
def join_words_with_hyphen(self, sentence):
|
83 |
+
|
84 |
+
return '-'.join(sentence.split())
|
85 |
+
|
86 |
+
def process_answers(self):
|
87 |
+
"""
|
88 |
+
Processes the answers by extracting raw and processed answers and finding the most frequent ones.
|
89 |
+
"""
|
90 |
+
if self.merged_df is not None:
|
91 |
+
self.merged_df['raw_answers'] = self.merged_df['answers'].apply(lambda x: [ans['raw_answer'] for ans in x])
|
92 |
+
self.merged_df['processed_answers'] = self.merged_df['answers'].apply(
|
93 |
+
lambda x: [ans['answer'] for ans in x])
|
94 |
+
self.merged_df['most_frequent_raw_answer'] = self.merged_df['raw_answers'].apply(self.find_most_frequent)
|
95 |
+
self.merged_df['most_frequent_processed_answer'] = self.merged_df['processed_answers'].apply(
|
96 |
+
self.find_most_frequent)
|
97 |
+
self.merged_df.drop(columns=['answers'], inplace=True)
|
98 |
+
else:
|
99 |
+
print("DataFrames have not been merged yet.")
|
100 |
+
|
101 |
+
# Apply the function to the 'most_frequent_processed_answer' column
|
102 |
+
self.merged_df['single_word_answers'] = self.merged_df['most_frequent_processed_answer'].apply(
|
103 |
+
self.join_words_with_hyphen)
|
104 |
+
|
105 |
+
def get_processed_data(self):
|
106 |
+
"""
|
107 |
+
Retrieves the processed DataFrame.
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
DataFrame: The processed DataFrame. Returns None if the DataFrame is empty or not processed.
|
111 |
+
"""
|
112 |
+
if self.merged_df is not None:
|
113 |
+
return self.merged_df
|
114 |
+
else:
|
115 |
+
print("DataFrame is empty or not processed yet.")
|
116 |
+
return None
|
117 |
+
|
118 |
+
def save_to_csv(self, df, saved_file_name):
|
119 |
+
|
120 |
+
if saved_file_name is not None:
|
121 |
+
if ".csv" not in saved_file_name:
|
122 |
+
df.to_csv(os.path.join(saved_file_name, ".csv"), index=None)
|
123 |
+
|
124 |
+
else:
|
125 |
+
df.to_csv(saved_file_name, index=None)
|
126 |
+
|
127 |
+
else:
|
128 |
+
df.to_csv("data.csv", index=None)
|
129 |
+
|
130 |
+
def display_dataframe(self):
|
131 |
+
"""
|
132 |
+
Displays the processed DataFrame.
|
133 |
+
"""
|
134 |
+
if self.merged_df is not None:
|
135 |
+
print(self.merged_df)
|
136 |
+
else:
|
137 |
+
print("DataFrame is empty.")
|
138 |
+
|
139 |
+
|
140 |
+
def process_okvqa_dataset(questions_file_path, annotations_file_path, save_to_csv=False, saved_file_name=None):
|
141 |
+
"""
|
142 |
+
Processes the OK-VQA dataset given the file paths for questions and annotations.
|
143 |
+
|
144 |
+
Parameters:
|
145 |
+
questions_file_path (str): The file path for the questions JSON file.
|
146 |
+
annotations_file_path (str): The file path for the annotations JSON file.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
DataFrame: The processed DataFrame containing merged and processed VQA data.
|
150 |
+
"""
|
151 |
+
# Create an instance of the class
|
152 |
+
processor = VQADataProcessor(questions_file_path, annotations_file_path)
|
153 |
+
|
154 |
+
# Process the data
|
155 |
+
processor.merge_dataframes()
|
156 |
+
processor.process_answers()
|
157 |
+
|
158 |
+
# Retrieve the processed DataFrame
|
159 |
+
processed_data = processor.get_processed_data()
|
160 |
+
|
161 |
+
if save_to_csv:
|
162 |
+
processor.save_to_csv(processed_data, saved_file_name)
|
163 |
+
|
164 |
+
return processed_data
|
165 |
+
|
166 |
+
|
167 |
+
def show_image(image):
|
168 |
+
"""
|
169 |
+
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
|
170 |
+
Handles different types of image inputs (file path, PIL Image, numpy array, OpenCV, PyTorch tensor).
|
171 |
+
|
172 |
+
Args:
|
173 |
+
image (str or PIL.Image or numpy.ndarray or torch.Tensor): The image to display.
|
174 |
+
"""
|
175 |
+
in_jupyter = is_jupyter_notebook()
|
176 |
+
|
177 |
+
# Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor
|
178 |
+
if isinstance(image, str):
|
179 |
+
|
180 |
+
if os.path.isfile(image):
|
181 |
+
image = Image.open(image)
|
182 |
+
else:
|
183 |
+
raise ValueError("File path provided does not exist.")
|
184 |
+
elif isinstance(image, np.ndarray):
|
185 |
+
|
186 |
+
if image.ndim == 3 and image.shape[2] in [3, 4]:
|
187 |
+
|
188 |
+
image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image)
|
189 |
+
else:
|
190 |
+
|
191 |
+
image = Image.fromarray(image)
|
192 |
+
elif torch.is_tensor(image):
|
193 |
+
|
194 |
+
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
|
195 |
+
|
196 |
+
# Display the image
|
197 |
+
if in_jupyter:
|
198 |
+
|
199 |
+
from IPython.display import display
|
200 |
+
display(image)
|
201 |
+
else:
|
202 |
+
|
203 |
+
image.show()
|
204 |
+
|
205 |
+
import matplotlib.pyplot as plt
|
206 |
+
|
207 |
+
def show_image_with_matplotlib(image):
|
208 |
+
if isinstance(image, str):
|
209 |
+
image = Image.open(image)
|
210 |
+
elif isinstance(image, np.ndarray):
|
211 |
+
image = Image.fromarray(image)
|
212 |
+
elif torch.is_tensor(image):
|
213 |
+
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
|
214 |
+
|
215 |
+
plt.imshow(image)
|
216 |
+
plt.axis('off') # Turn off axis numbers
|
217 |
+
plt.show()
|
218 |
+
|
219 |
+
|
220 |
+
def is_jupyter_notebook():
|
221 |
+
"""
|
222 |
+
Check if the code is running in a Jupyter notebook.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
bool: True if running in a Jupyter notebook, False otherwise.
|
226 |
+
"""
|
227 |
+
try:
|
228 |
+
from IPython import get_ipython
|
229 |
+
if 'IPKernelApp' not in get_ipython().config:
|
230 |
+
return False
|
231 |
+
if 'ipykernel' in str(type(get_ipython())):
|
232 |
+
return True # Running in Jupyter Notebook
|
233 |
+
except (NameError, AttributeError):
|
234 |
+
return False # Not running in Jupyter Notebook
|
235 |
+
|
236 |
+
return False # Default to False if none of the above conditions are met
|
237 |
+
|
238 |
+
|
239 |
+
def is_pycharm():
|
240 |
+
return 'PYCHARM_HOSTED' in os.environ
|
241 |
+
|
242 |
+
|
243 |
+
def is_google_colab():
|
244 |
+
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
|
245 |
+
|
246 |
+
|
247 |
+
def get_path(name, path_type):
|
248 |
+
"""
|
249 |
+
Generates a path for models, images, or data based on the specified type.
|
250 |
+
|
251 |
+
Args:
|
252 |
+
name (str): The name of the model, image, or data folder/file.
|
253 |
+
path_type (str): The type of path needed ('models', 'images', or 'data').
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
str: The full path to the specified resource.
|
257 |
+
"""
|
258 |
+
# Get the current working directory (assumed to be inside 'code' folder)
|
259 |
+
current_dir = os.getcwd()
|
260 |
+
|
261 |
+
# Get the directory one level up (the parent directory)
|
262 |
+
parent_dir = os.path.dirname(current_dir)
|
263 |
+
|
264 |
+
# Construct the path to the specified folder
|
265 |
+
folder_path = os.path.join(parent_dir, path_type)
|
266 |
+
|
267 |
+
# Construct the full path to the specific resource
|
268 |
+
full_path = os.path.join(folder_path, name)
|
269 |
+
|
270 |
+
return full_path
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
if __name__ == "__main__":
|
275 |
+
pass
|
276 |
+
#val_data = process_okvqa_dataset('OpenEnded_mscoco_val2014_questions.json', 'mscoco_val2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_val.csv")
|
277 |
+
#train_data = process_okvqa_dataset('OpenEnded_mscoco_train2014_questions.json', 'mscoco_train2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_train.csv")
|