Update app.py
Browse files
app.py
CHANGED
@@ -13,236 +13,23 @@ from my_model.object_detection import detect_and_draw_objects
|
|
13 |
from my_model.captioner.image_captioning import get_caption
|
14 |
from my_model.gen_utilities import free_gpu_resources
|
15 |
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
|
|
|
16 |
|
17 |
|
18 |
|
19 |
-
def answer_question(caption, detected_objects_str, question, model):
|
20 |
|
21 |
-
answer = model.generate_answer(question, caption, detected_objects_str)
|
22 |
-
return answer
|
23 |
-
|
24 |
-
|
25 |
-
# Sample images (assuming these are paths to your sample images)
|
26 |
-
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
|
27 |
-
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
|
28 |
-
"Files/sample7.jpg"]
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
def analyze_image(image, model):
|
33 |
-
|
34 |
-
img = copy.deepcopy(image) # we dont wanna apply changes to the original image
|
35 |
-
caption = model.get_caption(img)
|
36 |
-
image_with_boxes, detected_objects_str = model.detect_objects(img)
|
37 |
-
st.text("I am ready, let's talk!")
|
38 |
-
free_gpu_resources()
|
39 |
-
|
40 |
-
return caption, detected_objects_str, image_with_boxes
|
41 |
-
|
42 |
-
|
43 |
-
def image_qa_app(kbvqa):
|
44 |
-
if 'images_data' not in st.session_state:
|
45 |
-
st.session_state['images_data'] = {}
|
46 |
-
|
47 |
-
# Display sample images as clickable thumbnails
|
48 |
-
st.write("Choose from sample images:")
|
49 |
-
cols = st.columns(len(sample_images))
|
50 |
-
for idx, sample_image_path in enumerate(sample_images):
|
51 |
-
with cols[idx]:
|
52 |
-
image = Image.open(sample_image_path)
|
53 |
-
st.image(image, use_column_width=True)
|
54 |
-
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
|
55 |
-
process_new_image(sample_image_path, image, kbvqa)
|
56 |
-
|
57 |
-
# Image uploader
|
58 |
-
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
|
59 |
-
if uploaded_image is not None:
|
60 |
-
process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
|
61 |
-
|
62 |
-
# Display and interact with each uploaded/selected image
|
63 |
-
for image_key, image_data in st.session_state['images_data'].items():
|
64 |
-
st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-11:]}', use_column_width=True)
|
65 |
-
if not image_data['analysis_done']:
|
66 |
-
st.text("Cool image, please click 'Analyze Image'..")
|
67 |
-
if st.button('Analyze Image', key=f'analyze_{image_key}'):
|
68 |
-
caption, detected_objects_str, image_with_boxes = analyze_image(image_data['image'], kbvqa) # we can use the image_with_boxes later if we want to show it.
|
69 |
-
image_data['caption'] = caption
|
70 |
-
image_data['detected_objects_str'] = detected_objects_str
|
71 |
-
image_data['analysis_done'] = True
|
72 |
-
|
73 |
-
# Initialize qa_history for each image
|
74 |
-
qa_history = image_data.get('qa_history', [])
|
75 |
-
|
76 |
-
if image_data['analysis_done']:
|
77 |
-
question = st.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
|
78 |
-
if st.button('Get Answer', key=f'answer_{image_key}'):
|
79 |
-
if question not in [q for q, _ in qa_history]:
|
80 |
-
answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
|
81 |
-
qa_history.append((question, answer))
|
82 |
-
image_data['qa_history'] = qa_history
|
83 |
-
else:
|
84 |
-
st.info("This question has already been asked.")
|
85 |
-
|
86 |
-
# Display Q&A history for each image
|
87 |
-
for q, a in qa_history:
|
88 |
-
st.text(f"Q: {q}\nA: {a}\n")
|
89 |
-
|
90 |
-
|
91 |
-
def process_new_image(image_key, image, kbvqa):
|
92 |
-
"""Process a new image and update the session state."""
|
93 |
-
if image_key not in st.session_state['images_data']:
|
94 |
-
st.session_state['images_data'][image_key] = {
|
95 |
-
'image': image,
|
96 |
-
'caption': '',
|
97 |
-
'detected_objects_str': '',
|
98 |
-
'qa_history': [],
|
99 |
-
'analysis_done': False
|
100 |
-
}
|
101 |
-
|
102 |
-
def run_inference():
|
103 |
-
st.title("Run Inference")
|
104 |
-
st.write("Please note that this is not a general purpose model, it is specifically trained on OK-VQA dataset and is designed to give direct and short answers to the given questions.")
|
105 |
-
|
106 |
-
method = st.selectbox(
|
107 |
-
"Choose a method:",
|
108 |
-
["Fine-Tuned Model", "In-Context Learning (n-shots)"],
|
109 |
-
index=0
|
110 |
-
)
|
111 |
-
|
112 |
-
detection_model = st.selectbox(
|
113 |
-
"Choose a model for objects detection:",
|
114 |
-
["yolov5", "detic"],
|
115 |
-
index=1 # "detic" is selected by default
|
116 |
-
)
|
117 |
-
|
118 |
-
default_confidence = 0.2 if detection_model == "yolov5" else 0.4
|
119 |
-
confidence_level = st.slider(
|
120 |
-
"Select minimum detection confidence level",
|
121 |
-
min_value=0.1,
|
122 |
-
max_value=0.9,
|
123 |
-
value=default_confidence,
|
124 |
-
step=0.1
|
125 |
-
)
|
126 |
-
|
127 |
-
if 'model_settings' not in st.session_state:
|
128 |
-
st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
|
129 |
-
|
130 |
-
settings_changed = (st.session_state['model_settings']['detection_model'] != detection_model or
|
131 |
-
st.session_state['model_settings']['confidence_level'] != confidence_level)
|
132 |
-
|
133 |
-
need_model_reload = settings_changed and 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None
|
134 |
-
|
135 |
-
if need_model_reload:
|
136 |
-
st.text("Model Settings have changed, please reload the model, this will take no time :)")
|
137 |
-
|
138 |
-
button_label = "Reload Model" if need_model_reload else "Load Model"
|
139 |
-
|
140 |
-
if method == "Fine-Tuned Model":
|
141 |
-
if 'kbvqa' not in st.session_state:
|
142 |
-
st.session_state['kbvqa'] = None
|
143 |
-
|
144 |
-
if st.button(button_label):
|
145 |
-
|
146 |
-
free_gpu_resources()
|
147 |
-
if st.session_state['kbvqa'] is not None:
|
148 |
-
if not settings_changed:
|
149 |
-
st.write("Model already loaded.")
|
150 |
-
else:
|
151 |
-
free_gpu_resources()
|
152 |
-
detection_model = st.session_state['model_settings']['detection_model']
|
153 |
-
confidence_level = st.session_state['model_settings']['confidence_level']
|
154 |
-
prepare_kbvqa_model(detection_model, only_reload_detection_model=True) # only reload detection model with new settings
|
155 |
-
st.session_state['kbvqa'].detection_confidence = confidence_level
|
156 |
-
free_gpu_resources()
|
157 |
-
else:
|
158 |
-
st.text("Loading the model will take no more than a few minutes . .")
|
159 |
-
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
|
160 |
-
st.session_state['kbvqa'].detection_confidence = confidence_level
|
161 |
-
st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
|
162 |
-
st.write("Model is ready for inference.")
|
163 |
-
free_gpu_resources()
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
if st.session_state['kbvqa']:
|
168 |
-
display_model_settings()
|
169 |
-
display_session_state()
|
170 |
-
image_qa_app(st.session_state['kbvqa'])
|
171 |
-
|
172 |
-
else:
|
173 |
-
st.write('Model is not ready yet, will be updated later.')
|
174 |
-
|
175 |
-
|
176 |
-
def display_model_settings():
|
177 |
-
st.write("### Current Model Settings:")
|
178 |
-
st.table(pd.DataFrame(st.session_state['model_settings'], index=[0]))
|
179 |
-
|
180 |
-
def display_session_state():
|
181 |
-
st.write("### Current Session State:")
|
182 |
-
# Convert session state to a list of dictionaries, each representing a row
|
183 |
-
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
|
184 |
-
# Create a DataFrame from the list
|
185 |
-
df = pd.DataFrame(data)
|
186 |
-
st.table(df)
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
# Main function
|
193 |
def main():
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
Further details will be updated later""")
|
204 |
-
|
205 |
-
elif selection == "Dissertation Report":
|
206 |
-
st.title("Dissertation Report")
|
207 |
-
st.write("Click the link below to view the PDF.")
|
208 |
-
# Example to display a link to a PDF
|
209 |
-
st.download_button(
|
210 |
-
label="Download PDF",
|
211 |
-
data=open("Files/Dissertation Report.pdf", "rb"),
|
212 |
-
file_name="example.pdf",
|
213 |
-
mime="application/octet-stream"
|
214 |
-
)
|
215 |
-
|
216 |
-
|
217 |
-
elif selection == "Evaluation Results":
|
218 |
-
st.title("Evaluation Results")
|
219 |
-
st.write("This is a Place Holder until the contents are uploaded.")
|
220 |
-
|
221 |
-
|
222 |
-
elif selection == "Dataset Analysis":
|
223 |
-
st.title("OK-VQA Dataset Analysis")
|
224 |
-
st.write("This is a Place Holder until the contents are uploaded.")
|
225 |
-
|
226 |
-
elif selection == "Finetuning and Evaluation Results":
|
227 |
-
st.title("Finetuning and Evaluation Results")
|
228 |
-
st.write("This is a Place Holder until the contents are uploaded.")
|
229 |
-
|
230 |
-
|
231 |
-
elif selection == "Run Inference":
|
232 |
-
run_inference()
|
233 |
-
|
234 |
-
elif selection == "Code":
|
235 |
-
st.title("Code")
|
236 |
-
st.markdown("You can view the code for this project on the Hugging Face Space file page.")
|
237 |
-
st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_PlayGround/tree/main)", unsafe_allow_html=True)
|
238 |
-
|
239 |
-
elif selection == "More Pages will follow .. ":
|
240 |
-
st.title("Staye Tuned")
|
241 |
-
st.write("This is a Place Holder until the contents are uploaded.")
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
|
|
|
246 |
|
247 |
if __name__ == "__main__":
|
248 |
main()
|
|
|
13 |
from my_model.captioner.image_captioning import get_caption
|
14 |
from my_model.gen_utilities import free_gpu_resources
|
15 |
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
|
16 |
+
from my_model.utilities.st_utils import UIManager, StateManager
|
17 |
|
18 |
|
19 |
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def main():
|
22 |
|
23 |
+
ui_manager = UIManager()
|
24 |
+
selection = ui_manager.display_sidebar()
|
25 |
+
ui_manager.display_selected_page("Home")
|
26 |
+
ui_manager.display_selected_page("Dataset Analysis")
|
27 |
+
ui_manager.display_selected_page("Finetuning and Evaluation Results")
|
28 |
+
ui_manager.display_selected_page("Run Inference")
|
29 |
+
ui_manager.display_selected_page("Code")
|
30 |
+
ui_manager.display_selected_page("More Pages will follow .. ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
main()
|