fixed
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
5 |
+
|
6 |
+
|
7 |
+
def load_model():
|
8 |
+
|
9 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
10 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16, device_map="auto")
|
11 |
+
|
12 |
+
return model, processor
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
def answer_question(image, question, model, processor):
|
17 |
+
|
18 |
+
|
19 |
+
image = Image.open(image).convert('RGB')
|
20 |
+
|
21 |
+
inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16)
|
22 |
+
|
23 |
+
out = model.generate(**inputs, max_length=200, min_length=20, num_beams=1)
|
24 |
+
|
25 |
+
answer = processor.decode(out[0], skip_special_tokens=True).strip()
|
26 |
+
return answer
|
27 |
+
|
28 |
+
st.title("Image Question Answering")
|
29 |
+
|
30 |
+
# File uploader for the image
|
31 |
+
image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
32 |
+
|
33 |
+
# Text input for the question
|
34 |
+
question = st.text_input("Enter your question about the image:")
|
35 |
+
|
36 |
+
if st.button("Get Answer"):
|
37 |
+
if image is not None and question:
|
38 |
+
# Display the image
|
39 |
+
st.image(image, use_column_width=True)
|
40 |
+
# Get and display the answer
|
41 |
+
model, processor = load_caption_model()
|
42 |
+
answer = answer_question(image, question, model, processor)
|
43 |
+
st.write(answer)
|
44 |
+
else:
|
45 |
+
st.write("Please upload an image and enter a question.")
|