Update my_model/fine_tuner/fine_tuner.py
Browse files
my_model/fine_tuner/fine_tuner.py
CHANGED
@@ -96,13 +96,12 @@ class Finetuner:
|
|
96 |
- print_trainable_parameters: Prints the number of trainable parameters in the model.
|
97 |
"""
|
98 |
|
|
|
99 |
def __init__(self, train_dataset: Dataset, eval_dataset: Dataset) -> None:
|
100 |
"""
|
101 |
Initializes the Finetuner class with the model, tokenizer, and datasets.
|
102 |
|
103 |
Args:
|
104 |
-
model (AutoModelForCausalLM): The pre-trained language model.
|
105 |
-
tokenizer (AutoTokenizer): The tokenizer for the model.
|
106 |
train_dataset (Dataset): The dataset for training the model.
|
107 |
eval_dataset (Dataset): The dataset for evaluating the model.
|
108 |
"""
|
@@ -111,7 +110,7 @@ class Finetuner:
|
|
111 |
self.merged_model = None
|
112 |
self.train_dataset = train_dataset
|
113 |
self.eval_dataset = eval_dataset
|
114 |
-
# please refer to config file 'fine_tuning_config.py' for training arguments description.
|
115 |
self.training_arguments = TrainingArguments(
|
116 |
output_dir=config.OUTPUT_DIR,
|
117 |
num_train_epochs=config.NUM_TRAIN_EPOCHS,
|
@@ -135,10 +134,9 @@ class Finetuner:
|
|
135 |
report_to="tensorboard"
|
136 |
)
|
137 |
|
138 |
-
def load_LLAMA2_for_finetuning(self):
|
139 |
"""
|
140 |
Loads the LLAMA2 model and tokenizer, specifically configured for fine-tuning.
|
141 |
-
This method ensures the model is ready to be adapted to a specific task or dataset.
|
142 |
|
143 |
Returns:
|
144 |
Tuple[AutoModelForCausalLM, AutoTokenizer]: The loaded model and tokenizer.
|
@@ -148,6 +146,7 @@ class Finetuner:
|
|
148 |
base_model, tokenizer = llm_manager.load_model_and_tokenizer(for_fine_tuning=True)
|
149 |
|
150 |
return base_model, tokenizer
|
|
|
151 |
|
152 |
def find_all_linear_names(self) -> List[str]:
|
153 |
"""
|
@@ -156,6 +155,7 @@ class Finetuner:
|
|
156 |
Returns:
|
157 |
List[str]: A list of linear layer names.
|
158 |
"""
|
|
|
159 |
cls = bitsandbytes.nn.Linear4bit
|
160 |
lora_module_names = set()
|
161 |
for name, module in self.base_model.named_modules():
|
@@ -167,12 +167,16 @@ class Finetuner:
|
|
167 |
lora_module_names -= {'lm_head', 'gate_proj'}
|
168 |
return list(lora_module_names)
|
169 |
|
|
|
170 |
def print_trainable_parameters(self, use_4bit: bool = False) -> None:
|
171 |
"""
|
172 |
Calculates and prints the number of trainable parameters in the model.
|
173 |
|
174 |
Args:
|
175 |
use_4bit (bool): If true, calculates the parameter count considering 4-bit quantization.
|
|
|
|
|
|
|
176 |
"""
|
177 |
trainable_params = sum(p.numel() for p in self.base_model.parameters() if p.requires_grad)
|
178 |
if use_4bit:
|
@@ -188,6 +192,9 @@ class Finetuner:
|
|
188 |
|
189 |
Args:
|
190 |
peft_config (LoraConfig): Configuration for the PEFT training process.
|
|
|
|
|
|
|
191 |
"""
|
192 |
self.base_model.config.use_cache = False
|
193 |
# Set the pretraining_tp flag to 1 to enable the use of LoRA (Low-Rank Adapters) layers.
|
@@ -207,8 +214,7 @@ class Finetuner:
|
|
207 |
)
|
208 |
self.trainer.train()
|
209 |
|
210 |
-
def save_model(self):
|
211 |
-
|
212 |
"""
|
213 |
Saves the fine-tuned model to the specified directory.
|
214 |
|
@@ -218,12 +224,15 @@ class Finetuner:
|
|
218 |
for later use or evaluation.
|
219 |
|
220 |
The saved model can be easily loaded using Hugging Face's model loading utilities.
|
|
|
|
|
|
|
221 |
"""
|
222 |
|
223 |
self.fine_tuned_adapter_name = config.ADAPTER_SAVE_NAME
|
224 |
self.trainer.model.save_pretrained(self.fine_tuned_adapter_name)
|
225 |
|
226 |
-
def merge_weights(self):
|
227 |
"""
|
228 |
Merges the weights of the fine-tuned adapter with the base model.
|
229 |
|
@@ -234,18 +243,26 @@ class Finetuner:
|
|
234 |
After merging, the weights of the adapter are no longer separate from the
|
235 |
base model, enabling more efficient storage and deployment. The merged model
|
236 |
is stored in the 'self.merged_model' attribute of the Finetuner class.
|
|
|
|
|
|
|
237 |
"""
|
238 |
|
239 |
self.merged_model = PeftModel.from_pretrained(self.base_model, self.fine_tuned_adapter_name)
|
240 |
self.merged_model = self.merged_model.merge_and_unload()
|
|
|
241 |
|
242 |
-
def delete_model(self, model_name: str):
|
243 |
"""
|
244 |
Deletes a specified model attribute.
|
245 |
|
246 |
Args:
|
247 |
model_name (str): The name of the model attribute to delete.
|
|
|
|
|
|
|
248 |
"""
|
|
|
249 |
try:
|
250 |
if hasattr(self, model_name) and getattr(self, model_name) is not None:
|
251 |
delattr(self, model_name)
|
@@ -254,14 +271,19 @@ class Finetuner:
|
|
254 |
print(f"Warning: Model '{model_name}' has already been cleared or does not exist.")
|
255 |
except Exception as e:
|
256 |
print(f"Error occurred while deleting model '{model_name}': {str(e)}")
|
|
|
257 |
|
258 |
-
def delete_trainer(self, trainer_name: str):
|
259 |
"""
|
260 |
Deletes a specified trainer object.
|
261 |
|
262 |
Args:
|
263 |
trainer_name (str): The name of the trainer object to delete.
|
|
|
|
|
|
|
264 |
"""
|
|
|
265 |
try:
|
266 |
if hasattr(self, trainer_name) and getattr(self, trainer_name) is not None:
|
267 |
delattr(self, trainer_name)
|
@@ -271,10 +293,15 @@ class Finetuner:
|
|
271 |
except Exception as e:
|
272 |
print(f"Error occurred while deleting trainer object '{trainer_name}': {str(e)}")
|
273 |
|
274 |
-
|
|
|
275 |
"""
|
276 |
Clears GPU memory.
|
|
|
|
|
|
|
277 |
"""
|
|
|
278 |
try:
|
279 |
if torch.cuda.is_available():
|
280 |
torch.cuda.empty_cache()
|
@@ -282,10 +309,15 @@ class Finetuner:
|
|
282 |
except Exception as e:
|
283 |
print(f"Error occurred while clearing GPU memory: {str(e)}")
|
284 |
|
285 |
-
|
|
|
286 |
"""
|
287 |
Clears Hugging Face's Transformers cache and runs garbage collection.
|
|
|
|
|
|
|
288 |
"""
|
|
|
289 |
try:
|
290 |
if os.path.exists(TRANSFORMERS_CACHE):
|
291 |
shutil.rmtree(TRANSFORMERS_CACHE, ignore_errors=True)
|
@@ -296,7 +328,9 @@ class Finetuner:
|
|
296 |
except Exception as e:
|
297 |
print(f"Error occurred while clearing cache and collecting garbage: {str(e)}")
|
298 |
|
299 |
-
|
|
|
|
|
300 |
"""
|
301 |
Conducts the fine-tuning process of a pre-trained language model using specified configurations.
|
302 |
This function encompasses the complete workflow of fine-tuning, including data handling, training,
|
@@ -313,9 +347,8 @@ def fine_tune(save_fine_tuned_adapter=False, merge=False, delete_trainer_after_f
|
|
313 |
delete_trainer_after_fine_tune (bool): If True, deletes the trainer object after fine-tuning to free up resources.
|
314 |
|
315 |
Returns:
|
316 |
-
The fine-tuned model after the fine-tuning process. This could be either the merged model
|
317 |
-
|
318 |
-
|
319 |
"""
|
320 |
|
321 |
data_handler = FinetuningDataHandler()
|
|
|
96 |
- print_trainable_parameters: Prints the number of trainable parameters in the model.
|
97 |
"""
|
98 |
|
99 |
+
|
100 |
def __init__(self, train_dataset: Dataset, eval_dataset: Dataset) -> None:
|
101 |
"""
|
102 |
Initializes the Finetuner class with the model, tokenizer, and datasets.
|
103 |
|
104 |
Args:
|
|
|
|
|
105 |
train_dataset (Dataset): The dataset for training the model.
|
106 |
eval_dataset (Dataset): The dataset for evaluating the model.
|
107 |
"""
|
|
|
110 |
self.merged_model = None
|
111 |
self.train_dataset = train_dataset
|
112 |
self.eval_dataset = eval_dataset
|
113 |
+
# please refer to config file 'my_model/config/fine_tuning_config.py' for training arguments description.
|
114 |
self.training_arguments = TrainingArguments(
|
115 |
output_dir=config.OUTPUT_DIR,
|
116 |
num_train_epochs=config.NUM_TRAIN_EPOCHS,
|
|
|
134 |
report_to="tensorboard"
|
135 |
)
|
136 |
|
137 |
+
def load_LLAMA2_for_finetuning(self) -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
138 |
"""
|
139 |
Loads the LLAMA2 model and tokenizer, specifically configured for fine-tuning.
|
|
|
140 |
|
141 |
Returns:
|
142 |
Tuple[AutoModelForCausalLM, AutoTokenizer]: The loaded model and tokenizer.
|
|
|
146 |
base_model, tokenizer = llm_manager.load_model_and_tokenizer(for_fine_tuning=True)
|
147 |
|
148 |
return base_model, tokenizer
|
149 |
+
|
150 |
|
151 |
def find_all_linear_names(self) -> List[str]:
|
152 |
"""
|
|
|
155 |
Returns:
|
156 |
List[str]: A list of linear layer names.
|
157 |
"""
|
158 |
+
|
159 |
cls = bitsandbytes.nn.Linear4bit
|
160 |
lora_module_names = set()
|
161 |
for name, module in self.base_model.named_modules():
|
|
|
167 |
lora_module_names -= {'lm_head', 'gate_proj'}
|
168 |
return list(lora_module_names)
|
169 |
|
170 |
+
|
171 |
def print_trainable_parameters(self, use_4bit: bool = False) -> None:
|
172 |
"""
|
173 |
Calculates and prints the number of trainable parameters in the model.
|
174 |
|
175 |
Args:
|
176 |
use_4bit (bool): If true, calculates the parameter count considering 4-bit quantization.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
List[str]: None.
|
180 |
"""
|
181 |
trainable_params = sum(p.numel() for p in self.base_model.parameters() if p.requires_grad)
|
182 |
if use_4bit:
|
|
|
192 |
|
193 |
Args:
|
194 |
peft_config (LoraConfig): Configuration for the PEFT training process.
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
List[str]: None.
|
198 |
"""
|
199 |
self.base_model.config.use_cache = False
|
200 |
# Set the pretraining_tp flag to 1 to enable the use of LoRA (Low-Rank Adapters) layers.
|
|
|
214 |
)
|
215 |
self.trainer.train()
|
216 |
|
217 |
+
def save_model(self) -> None:
|
|
|
218 |
"""
|
219 |
Saves the fine-tuned model to the specified directory.
|
220 |
|
|
|
224 |
for later use or evaluation.
|
225 |
|
226 |
The saved model can be easily loaded using Hugging Face's model loading utilities.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
None
|
230 |
"""
|
231 |
|
232 |
self.fine_tuned_adapter_name = config.ADAPTER_SAVE_NAME
|
233 |
self.trainer.model.save_pretrained(self.fine_tuned_adapter_name)
|
234 |
|
235 |
+
def merge_weights(self) -> None:
|
236 |
"""
|
237 |
Merges the weights of the fine-tuned adapter with the base model.
|
238 |
|
|
|
243 |
After merging, the weights of the adapter are no longer separate from the
|
244 |
base model, enabling more efficient storage and deployment. The merged model
|
245 |
is stored in the 'self.merged_model' attribute of the Finetuner class.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
None
|
249 |
"""
|
250 |
|
251 |
self.merged_model = PeftModel.from_pretrained(self.base_model, self.fine_tuned_adapter_name)
|
252 |
self.merged_model = self.merged_model.merge_and_unload()
|
253 |
+
|
254 |
|
255 |
+
def delete_model(self, model_name: str) -> None:
|
256 |
"""
|
257 |
Deletes a specified model attribute.
|
258 |
|
259 |
Args:
|
260 |
model_name (str): The name of the model attribute to delete.
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
None
|
264 |
"""
|
265 |
+
|
266 |
try:
|
267 |
if hasattr(self, model_name) and getattr(self, model_name) is not None:
|
268 |
delattr(self, model_name)
|
|
|
271 |
print(f"Warning: Model '{model_name}' has already been cleared or does not exist.")
|
272 |
except Exception as e:
|
273 |
print(f"Error occurred while deleting model '{model_name}': {str(e)}")
|
274 |
+
|
275 |
|
276 |
+
def delete_trainer(self, trainer_name: str) -> None:
|
277 |
"""
|
278 |
Deletes a specified trainer object.
|
279 |
|
280 |
Args:
|
281 |
trainer_name (str): The name of the trainer object to delete.
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
None
|
285 |
"""
|
286 |
+
|
287 |
try:
|
288 |
if hasattr(self, trainer_name) and getattr(self, trainer_name) is not None:
|
289 |
delattr(self, trainer_name)
|
|
|
293 |
except Exception as e:
|
294 |
print(f"Error occurred while deleting trainer object '{trainer_name}': {str(e)}")
|
295 |
|
296 |
+
|
297 |
+
def clear_training_resources(self) -> None:
|
298 |
"""
|
299 |
Clears GPU memory.
|
300 |
+
|
301 |
+
Returns:
|
302 |
+
None
|
303 |
"""
|
304 |
+
|
305 |
try:
|
306 |
if torch.cuda.is_available():
|
307 |
torch.cuda.empty_cache()
|
|
|
309 |
except Exception as e:
|
310 |
print(f"Error occurred while clearing GPU memory: {str(e)}")
|
311 |
|
312 |
+
|
313 |
+
def clear_cache_and_collect_garbage(self) -> None:
|
314 |
"""
|
315 |
Clears Hugging Face's Transformers cache and runs garbage collection.
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
None
|
319 |
"""
|
320 |
+
|
321 |
try:
|
322 |
if os.path.exists(TRANSFORMERS_CACHE):
|
323 |
shutil.rmtree(TRANSFORMERS_CACHE, ignore_errors=True)
|
|
|
328 |
except Exception as e:
|
329 |
print(f"Error occurred while clearing cache and collecting garbage: {str(e)}")
|
330 |
|
331 |
+
|
332 |
+
|
333 |
+
def fine_tune(save_fine_tuned_adapter: bool = False, merge: bool = False, delete_trainer_after_fine_tune: bool = False) -> AutoModelForCausalLM:
|
334 |
"""
|
335 |
Conducts the fine-tuning process of a pre-trained language model using specified configurations.
|
336 |
This function encompasses the complete workflow of fine-tuning, including data handling, training,
|
|
|
347 |
delete_trainer_after_fine_tune (bool): If True, deletes the trainer object after fine-tuning to free up resources.
|
348 |
|
349 |
Returns:
|
350 |
+
AutoModelForCausalLM: The fine-tuned model after the fine-tuning process. This could be either the merged model
|
351 |
+
or the trained model based on the provided arguments.
|
|
|
352 |
"""
|
353 |
|
354 |
data_handler = FinetuningDataHandler()
|