Update my_model/results/evaluation.py
Browse files
my_model/results/evaluation.py
CHANGED
@@ -1 +1,89 @@
|
|
1 |
-
import pandas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from fuzzywuzzy import fuzz
|
3 |
+
from collections import Counter
|
4 |
+
from nltk.stem import PorterStemmer
|
5 |
+
from ast import literal_eval
|
6 |
+
from typing import Union, List
|
7 |
+
import streamlit as st
|
8 |
+
|
9 |
+
class KBVQAEvaluator:
|
10 |
+
def __init__(self):
|
11 |
+
"""
|
12 |
+
Initialize the VQA Processor with the dataset and configuration settings.
|
13 |
+
"""
|
14 |
+
self.data_path = 'Files/evaluation_results_final.xlsx'
|
15 |
+
self.use_fuzzy = False
|
16 |
+
self.stemmer = PorterStemmer()
|
17 |
+
self.scores_df = pd.read_excel(self.data_path, sheet_name="Scores")
|
18 |
+
self.df = pd.read_excel(self.data_path, sheet_name="Main Data")
|
19 |
+
self.vqa_scores = {}
|
20 |
+
self.exact_match_scores = {}
|
21 |
+
|
22 |
+
def stem_answers(self, answers: Union[str, List[str]]) -> Union[str, List[str]]:
|
23 |
+
"""
|
24 |
+
Apply Porter Stemmer to either a single string or a list of strings.
|
25 |
+
"""
|
26 |
+
if isinstance(answers, list):
|
27 |
+
return [" ".join(self.stemmer.stem(word.strip()) for word in answer.split()) for answer in answers]
|
28 |
+
else:
|
29 |
+
words = answers.split()
|
30 |
+
return " ".join(self.stemmer.stem(word.strip()) for word in words)
|
31 |
+
|
32 |
+
def calculate_vqa_score(self, ground_truths, model_answer):
|
33 |
+
"""
|
34 |
+
Calculate VQA score based on the number of matching answers, with optional fuzzy matching.
|
35 |
+
"""
|
36 |
+
if self.use_fuzzy:
|
37 |
+
fuzzy_matches = sum(fuzz.partial_ratio(model_answer, gt) >= 80 for gt in ground_truths)
|
38 |
+
return min(fuzzy_matches / 3, 1)
|
39 |
+
else:
|
40 |
+
count = Counter(ground_truths)
|
41 |
+
return min(count.get(model_answer, 0) / 3, 1)
|
42 |
+
|
43 |
+
def calculate_exact_match_score(self, ground_truths, model_answer):
|
44 |
+
"""
|
45 |
+
Calculate Exact Match score, with optional fuzzy matching.
|
46 |
+
"""
|
47 |
+
if self.use_fuzzy:
|
48 |
+
return int(any(fuzz.partial_ratio(model_answer, gt) >= 80 for gt in ground_truths))
|
49 |
+
else:
|
50 |
+
return int(model_answer in ground_truths)
|
51 |
+
|
52 |
+
def evaluate(self):
|
53 |
+
"""
|
54 |
+
Process the DataFrame: stem answers, calculate scores, and store results.
|
55 |
+
"""
|
56 |
+
self.df['raw_answers_stemmed'] = self.df['raw_answers'].apply(literal_eval).apply(self.stem_answers)
|
57 |
+
model_configurations = ['caption+detic', 'caption+yolov5', 'only_caption', 'only_detic', 'only_yolov5']
|
58 |
+
model_names = ['13b', '7b']
|
59 |
+
|
60 |
+
for name in model_names:
|
61 |
+
for config in model_configurations:
|
62 |
+
full_config = f'{name}_{config}'
|
63 |
+
self.df[f'{full_config}_stemmed'] = self.df[full_config].apply(self.stem_answers)
|
64 |
+
|
65 |
+
self.df[f'vqa_score_{full_config}'] = self.df.apply(lambda x: self.calculate_vqa_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1)
|
66 |
+
self.df[f'exact_match_score_{full_config}'] = self.df.apply(lambda x: self.calculate_exact_match_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1)
|
67 |
+
|
68 |
+
self.vqa_scores[full_config] = round(self.df[f'vqa_score_{full_config}'].mean()*100, 2)
|
69 |
+
self.exact_match_scores[full_config] = round(self.df[f'exact_match_score_{full_config}'].mean()*100, 2)
|
70 |
+
|
71 |
+
def save_results(self):
|
72 |
+
# Create a DataFrame for the scores
|
73 |
+
scores_data = {
|
74 |
+
'Model Configuration': list(self.vqa_scores.keys()),
|
75 |
+
'VQA Score': list(self.vqa_scores.values()),
|
76 |
+
'Exact Match Score': list(self.exact_match_scores.values())
|
77 |
+
}
|
78 |
+
scores_df = pd.DataFrame(scores_data)
|
79 |
+
|
80 |
+
# Saving the scores DataFrame to an Excel file
|
81 |
+
with pd.ExcelWriter('evaluation_results_final.xlsx', engine='openpyxl', mode='w') as writer:
|
82 |
+
scores_df.to_excel(writer, sheet_name='Scores', index=False)
|
83 |
+
|
84 |
+
def run_evaluator(self):
|
85 |
+
#evaluator.evaluate()
|
86 |
+
st.table(self.scores_df)
|
87 |
+
st.dataframe(self.scores_df, width=900, height=500)
|
88 |
+
#print(evaluator.exact_match_scores)
|
89 |
+
#evaluator.save_results()
|