Delete my_model/scratch/extract_objects.py
Browse files
my_model/scratch/extract_objects.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
from object_detection import ObjectDetector
|
2 |
-
import os
|
3 |
-
|
4 |
-
def detect_objects_for_image(image_name, detector):
|
5 |
-
|
6 |
-
if os.path.exists(image_path):
|
7 |
-
image = detector.process_image(image_path)
|
8 |
-
detected_objects_str, _ = detector.detect_objects(image)
|
9 |
-
return detected_objects_str
|
10 |
-
else:
|
11 |
-
return "Image not found"
|
12 |
-
|
13 |
-
def add_detected_objects_to_dataframe(df, image_directory, detector):
|
14 |
-
"""
|
15 |
-
Adds a column to the DataFrame with detected objects for each image specified in the 'image_name' column.
|
16 |
-
|
17 |
-
Parameters:
|
18 |
-
df (pd.DataFrame): DataFrame containing a column 'image_name' with image filenames.
|
19 |
-
image_directory (str): Path to the directory containing images.
|
20 |
-
detector (ObjectDetector): An instance of the ObjectDetector class.
|
21 |
-
|
22 |
-
Returns:
|
23 |
-
pd.DataFrame: The original DataFrame with an additional column 'detected_objects'.
|
24 |
-
"""
|
25 |
-
|
26 |
-
# Ensure 'image_name' column exists in the DataFrame
|
27 |
-
if 'image_name' not in df.columns:
|
28 |
-
raise ValueError("DataFrame must contain an 'image_name' column.")
|
29 |
-
|
30 |
-
image_path = os.path.join(image_directory, image_name)
|
31 |
-
|
32 |
-
# Function to detect objects for a given image filename
|
33 |
-
|
34 |
-
|
35 |
-
# Apply the function to each row in the DataFrame
|
36 |
-
df['detected_objects'] = df['image_name'].apply(detect_objects_for_image)
|
37 |
-
|
38 |
-
return df
|
39 |
-
|
40 |
-
# Example usage (assuming the function will be used in a context where 'detector' is defined and configured):
|
41 |
-
# df_images = pd.DataFrame({"image_name": ["image1.jpg", "image2.jpg", ...]})
|
42 |
-
# image_directory = "path/to/image_directory"
|
43 |
-
# updated_df = add_detected_objects_to_dataframe(df_images, image_directory, detector)
|
44 |
-
# updated_df.head()
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|