KB-VQA-E / models /yolov5 /benchmarks.py
m7mdal7aj's picture
uploading a fresh copy of the detection models
92894b3 verified
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Run YOLOv5 benchmarks on all supported export formats.
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Usage:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
import argparse
import platform
import sys
import time
from pathlib import Path
import pandas as pd
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import export
from models.experimental import attempt_load
from models.yolo import SegmentationModel
from segment.val import run as val_seg
from utils import notebook_init
from utils.general import LOGGER, check_yaml, file_size, print_args
from utils.torch_utils import select_device
from val import run as val_det
def run(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
y, t = [], time.time()
device = select_device(device)
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
try:
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:
assert gpu, "inference not supported on GPU"
# Export
if f == "-":
w = weights # PyTorch format
else:
w = export.run(
weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
)[-1] # all others
assert suffix in str(w), "export failed"
# Validate
if model_type == SegmentationModel:
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
else: # DetectionModel:
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
speed = result[2][1] # times (preprocess, inference, postprocess)
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
y.append([name, None, None, None]) # mAP, t_inference
if pt_only and i == 0:
break # break after PyTorch
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
py = pd.DataFrame(y, columns=c)
LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py if map else py.iloc[:, :2]))
if hard_fail and isinstance(hard_fail, str):
metrics = py["mAP50-95"].array # values to compare to floor
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
return py
def test(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
y, t = [], time.time()
device = select_device(device)
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
try:
w = (
weights
if f == "-"
else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
) # weights
assert suffix in str(w), "export failed"
y.append([name, True])
except Exception:
y.append([name, False]) # mAP, t_inference
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
py = pd.DataFrame(y, columns=["Format", "Export"])
LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py))
return py
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--test", action="store_true", help="test exports only")
parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
print_args(vars(opt))
return opt
def main(opt):
test(**vars(opt)) if opt.test else run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)