KB-VQA-E / app.py
m7mdal7aj's picture
Update app.py
b9be639
raw
history blame
1.4 kB
import streamlit as st
import torch
from transformers import Blip2Processor, Blip2ForConditionalGeneration
def load_caption_model():
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16, device_map="auto")
return model, processor
def answer_question(image, question, model, processor):
image = Image.open(image).convert('RGB')
inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs, max_length=200, min_length=20, num_beams=1)
answer = processor.decode(out[0], skip_special_tokens=True).strip()
return answer
st.title("Image Question Answering")
# File uploader for the image
image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
# Text input for the question
question = st.text_input("Enter your question about the image:")
if st.button("Get Answer"):
if image is not None and question:
# Display the image
st.image(image, use_column_width=True)
# Get and display the answer
model, processor = load_caption_model()
answer = answer_question(image, question, model, processor)
st.write(answer)
else:
st.write("Please upload an image and enter a question.")