KB-VQA-E / my_model /utilities /state_manager.py
m7mdal7aj's picture
Update my_model/utilities/state_manager.py
7d71f1b verified
raw
history blame
5.04 kB
import pandas as pd
import copy
import streamlit as st
from my_model.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
class StateManager:
def __init__(self):
self.initialize_state()
def initialize_state(self):
if 'images_data' not in st.session_state:
st.session_state['images_data'] = {}
if 'method' not in st.session_state:
st.session_state['method'] = None
if 'detection_model' not in st.session_state:
st.session_state['detection_model'] = None
if 'kbvqa' not in st.session_state:
st.session_state['kbvqa'] = None
if 'confidence_level' not in st.session_state:
st.session_state['confidence_level'] = None
def update_model_settings(self, detection_model=None, confidence_level=None, selected_method=None):
if detection_model is not None:
st.session_state['model_settings']['detection_model'] = detection_model
if confidence_level is not None:
st.session_state['model_settings']['confidence_level'] = confidence_level
if selected_method is not None:
st.session_state['model_settings']['selected_method'] = selected_method
def set_slider_value(self, text, min_value, max_value, value, step, slider_key_name):
return st.slider(text, min_value, max_value, value, step, key=slider_key_name)
def check_settings_changed(self, current_selected_method, current_detection_model, current_confidence_level):
return (st.session_state['model_settings']['detection_model'] != current_detection_model or
st.session_state['model_settings']['confidence_level'] != current_confidence_level or
st.session_state['model_settings']['selected_method'] != current_selected_method)
def display_model_settings(self):
st.write("### Current Model Settings:")
st.table(pd.DataFrame(st.session_state['model_settings'], index=[0]))
def display_session_state(self):
st.write("### Current Session State:")
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
df = pd.DataFrame(data)
st.table(df)
def load_model(self):
"""Load the KBVQA model with specified settings."""
try:
free_gpu_resources()
st.text("Loading the model, this should take no more than a few minutes, please wait...")
st.session_state['kbvqa'] = prepare_kbvqa_model(st.session_state.detection_model)
st.session_state['kbvqa'].detection_confidence = st.session_state.confidence_level
#self.update_model_settings(detection_model, confidence_level)
st.text("Model is ready for inference.")
free_gpu_resources()
except Exception as e:
st.error(f"Error loading model: {e}")
def get_model(self):
"""Retrieve the KBVQA model from the session state."""
return st.session_state.get('kbvqa', None)
def is_model_loaded(self):
return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None
def reload_detection_model(self, detection_model, confidence_level):
try:
free_gpu_resources()
if self.is_model_loaded():
prepare_kbvqa_model(detection_model, only_reload_detection_model=True)
st.session_state['kbvqa'].detection_confidence = confidence_level
self.update_model_settings(detection_model, confidence_level)
free_gpu_resources()
except Exception as e:
st.error(f"Error reloading detection model: {e}")
# New methods to be added
def process_new_image(self, image_key, image, kbvqa):
if image_key not in st.session_state['images_data']:
st.session_state['images_data'][image_key] = {
'image': image,
'caption': '',
'detected_objects_str': '',
'qa_history': [],
'analysis_done': False
}
def analyze_image(self, image, kbvqa):
img = copy.deepcopy(image)
caption = kbvqa.get_caption(img)
image_with_boxes, detected_objects_str = kbvqa.detect_objects(img)
return caption, detected_objects_str, image_with_boxes
def add_to_qa_history(self, image_key, question, answer):
if image_key in st.session_state['images_data']:
st.session_state['images_data'][image_key]['qa_history'].append((question, answer))
def get_images_data(self):
return st.session_state['images_data']
def update_image_data(self, image_key, caption, detected_objects_str, analysis_done):
if image_key in st.session_state['images_data']:
st.session_state['images_data'][image_key].update({
'caption': caption,
'detected_objects_str': detected_objects_str,
'analysis_done': analysis_done
})