|
|
|
Directory Overview: This directory contains all the atreamlit application pages: |
|
|
|
################################################################################################################################ |
|
|
|
## 1. home.py |
|
the `home.py` displays an introduction to the application with brief background and description of the application tools. |
|
|
|
################################################################################################################################ |
|
|
|
## 2. results.py |
|
The `results.py` module manages the interactive Streamlit demo for visualizing model evaluation results and analysis. |
|
It provides an interface for users to explore different aspects of model performance and evaluation samples. |
|
|
|
Notes: |
|
Ensure the necessary dependencies are installed and properly configured. |
|
The `run_demo` function relies on the ResultDemonstrator class to generate plots and display results. |
|
|
|
################################################################################################################################ |
|
|
|
## 3. run_inference.py |
|
The `run_inference.py` is responsible for the running inference to test and use the fine-tuned models. |
|
It manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question |
|
Answering (KBVQA) application. |
|
This module handles image uploads, displays sample images, and facilitates the question-answering process |
|
using the KBVQA model. |
|
|
|
Notes: |
|
- Ensure the necessary dependencies are installed and properly configured. |
|
- The `InferenceRunner` class relies on the KBVQA model to generate answers to questions based on image analysis. |
|
|
|
################################################################################################################################ |
|
|
|
## 4. model_arch.py |
|
The `model_arch.py` displays the model architecture and accompanying abstract and design details for the |
|
Knowledge-Based Visual Question Answering (KB-VQA) model. |
|
|
|
################################################################################################################################ |
|
|
|
## 5. dataset_analysis.py |
|
The dataset_analysis.py module provides tools for analyzing and visualizing distributions of question types |
|
within given question datasets for Knowledge-Based Visual Question Answering (KBVQA). It supports operations |
|
such as data loading, categorization of questions, visualization, and exporting data to CSV files. This module |
|
leverages Streamlit for interactive visualization and Altair for plotting. |
|
|
|
Notes: |
|
Ensure the necessary dependencies are installed and properly configured. |
|
The `OKVQADatasetAnalyzer` class leverages `Altair` for creating interactive visualizations and `Streamlit` for displaying these visualizations in a web app format. |
|
The `run_dataset_analyzer` function provides an overview of the dataset and utilizes the OKVQADatasetAnalyzer to visualize the data. |
|
This module has a dependency on the `process_okvqa_dataset` function from `my_model.dataset.dataset_processor`. |
|
|