|
import pandas as pd |
|
from fuzzywuzzy import fuzz |
|
from collections import Counter |
|
from nltk.stem import PorterStemmer |
|
from ast import literal_eval |
|
from typing import Union, List |
|
import streamlit as st |
|
from my_model.config import evaluation_config as config |
|
|
|
class KBVQAEvaluator: |
|
def __init__(self): |
|
""" |
|
Initialize the VQA Processor with the dataset and configuration settings. |
|
""" |
|
self.data_path = config.EVALUATION_DATA_PATH |
|
self.use_fuzzy = config.USE_FUZZY |
|
self.stemmer = PorterStemmer() |
|
self.scores_df = pd.read_excel(self.data_path, sheet_name="Scores") |
|
self.df = pd.read_excel(self.data_path, sheet_name="Main Data") |
|
self.vqa_scores = {} |
|
self.exact_match_scores = {} |
|
self.fuzzy_threshold = config.FUZZY_SCORE |
|
self.openai_api_key = config.OPENAI_API_KEY |
|
self.model_names = config.MODEL_NAMES |
|
self.model_configurations = config.MODEL_CONFIGURATIONS |
|
self.gpt4_seed = config.GPT4_SEED |
|
self.gpt4_max_tokens = config.GPT4_MAX_TOKENS |
|
self.gpt4_temperature = config.GPT4_TEMPERATURE |
|
|
|
def stem_answers(self, answers: Union[str, List[str]]) -> Union[str, List[str]]: |
|
""" |
|
Apply Porter Stemmer to either a single string or a list of strings. |
|
""" |
|
if isinstance(answers, list): |
|
return [" ".join(self.stemmer.stem(word.strip()) for word in answer.split()) for answer in answers] |
|
else: |
|
words = answers.split() |
|
return " ".join(self.stemmer.stem(word.strip()) for word in words) |
|
|
|
def calculate_vqa_score(self, ground_truths, model_answer): |
|
""" |
|
Calculate VQA score based on the number of matching answers, with optional fuzzy matching. |
|
""" |
|
if self.use_fuzzy: |
|
fuzzy_matches = sum(fuzz.partial_ratio(model_answer, gt) >= self.fuzzy_threshold for gt in ground_truths) |
|
return min(fuzzy_matches / 3, 1) |
|
else: |
|
count = Counter(ground_truths) |
|
return min(count.get(model_answer, 0) / 3, 1) |
|
|
|
def calculate_exact_match_score(self, ground_truths, model_answer): |
|
""" |
|
Calculate Exact Match score, with optional fuzzy matching. |
|
""" |
|
if self.use_fuzzy: |
|
return int(any(fuzz.partial_ratio(model_answer, gt) >= self.fuzzy_threshold for gt in ground_truths)) |
|
else: |
|
return int(model_answer in ground_truths) |
|
|
|
def syntactic_evaluation(self): |
|
""" |
|
Process the DataFrame: stem answers, calculate scores, and store results. |
|
""" |
|
self.df['raw_answers_stemmed'] = self.df['raw_answers'].apply(literal_eval).apply(self.stem_answers) |
|
|
|
for name in self.model_names: |
|
for config in self.model_configurations: |
|
full_config = f'{name}_{config}' |
|
self.df[f'{full_config}_stemmed'] = self.df[full_config].apply(self.stem_answers) |
|
|
|
self.df[f'vqa_score_{full_config}'] = self.df.apply(lambda x: self.calculate_vqa_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) |
|
self.df[f'exact_match_score_{full_config}'] = self.df.apply(lambda x: self.calculate_exact_match_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) |
|
|
|
self.vqa_scores[full_config] = round(self.df[f'vqa_score_{full_config}'].mean()*100, 2) |
|
self.exact_match_scores[full_config] = round(self.df[f'exact_match_score_{full_config}'].mean()*100, 2) |
|
|
|
def create_GPT4_messages_template(self, question, ground_truths, model_answer): |
|
""" |
|
Create a message list for the GPT-4 API call based on the question, ground truths, and model answer. |
|
""" |
|
system_message = { |
|
"role": "system", |
|
"content": """You are an AI trained to evaluate the equivalence of AI-generated answers to a set of ground truth answers for a given question. Upon reviewing a model's answer, determine if it matches the ground truths. Use the following rating system: 1 if you find that the model answer matches more than 25% of the ground truth answers, 2 if you find that the model answer matches only less than 25% of the ground truth answers, and 3 if the model answer is incorrect. Respond in the format below for easy parsing: |
|
Rating: {1/2/3} |
|
""" |
|
} |
|
|
|
user_message = { |
|
"role": "user", |
|
"content": f"Question : {question}\nGround Truth: {ground_truths}\nModel's Response: {model_answer}" |
|
} |
|
|
|
return [system_message, user_message] |
|
|
|
|
|
def semantic_evaluation(self): |
|
""" |
|
Perform semantic evaluation using GPT-4 for each model configuration. |
|
""" |
|
openai.api_key = self.openai_api_key |
|
model_configurations_for_semantic_evaluation = self.model_configurations[:2] |
|
for name in self.model_names: |
|
for config in model_configurations_for_semantic_evaluation: |
|
|
|
for index, row in self.df.iterrows(): |
|
messages = self.create_GPT4_messages_template(row['question'], row['raw_answers'][1:-1], row[name+'_'+config]) |
|
response = openai.ChatCompletion.create(model="gpt-4", messages=messages, max_tokens=self.gpt4_max_tokens, temperature=self.gpt4_temperature, seed=self.gpt4_seed) |
|
evaluation = response["choices"][0]["message"]["content"] |
|
rating = int(evaluation.split('\n')[0].split(":")[1].strip()) |
|
self.df.at[index, f'gpt4_rating_{config}'] = rating |
|
|
|
def save_results(self, save_filename): |
|
|
|
scores_data = { |
|
'Model Configuration': list(self.vqa_scores.keys()), |
|
'VQA Score': list(self.vqa_scores.values()), |
|
'Exact Match Score': list(self.exact_match_scores.values()) |
|
} |
|
scores_df = pd.DataFrame(scores_data) |
|
|
|
|
|
with pd.ExcelWriter(save_filename+'.xlsx', engine='openpyxl', mode='w') as writer: |
|
self.df.to_excel(writer, sheet_name='Main Data', index=False) |
|
scores_df.to_excel(writer, sheet_name='Scores', index=False) |
|
|
|
def run_evaluation(save=False, save_filename="results"): |
|
""" |
|
Run the full evaluation process using KBVQAEvaluator and save the results to an Excel file. |
|
""" |
|
|
|
evaluator = KBVQAEvaluator() |
|
|
|
|
|
evaluator.syntactic_evaluation() |
|
|
|
|
|
evaluator.semantic_evaluation() |
|
|
|
if save: |
|
|
|
evaluator.save_results(save_filename) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
pass |