File size: 13,295 Bytes
125214f
 
 
 
 
 
7e54217
1532662
125214f
 
 
 
 
1812270
eff41fa
40d77a8
125214f
 
1948116
7c3b785
 
571fea7
 
 
7c3b785
 
571fea7
7c3b785
 
 
eaa7a81
1948116
40d77a8
1948116
571fea7
7c3b785
571fea7
7c3b785
 
571fea7
 
 
 
7c3b785
571fea7
7c3b785
1948116
6657600
76f3951
1948116
0b0cffd
1948116
 
571fea7
 
 
 
 
d4b85b8
7c3b785
 
1948116
5667733
 
29f316e
67de2bd
df65239
1948116
571fea7
 
 
 
d4b85b8
1948116
df65239
1948116
571fea7
 
 
 
 
 
 
 
 
 
256561a
0f0c882
 
 
 
571fea7
 
 
 
 
 
 
 
 
 
0f0c882
 
 
f366249
 
 
 
 
0f0c882
 
571fea7
 
 
 
 
 
 
 
 
 
0f0c882
 
 
1d707c1
87fb74c
 
1d707c1
571fea7
 
 
 
 
 
 
 
 
256561a
0f0c882
 
571fea7
 
 
 
 
 
 
0f0c882
571fea7
0f0c882
f283cf3
 
 
571fea7
f283cf3
571fea7
 
 
 
 
 
 
 
 
 
 
 
 
 
094a401
0f0c882
 
 
 
1d707c1
0f0c882
571fea7
 
 
 
 
 
 
 
0f0c882
 
34b3b03
7316948
0bac0de
82e0944
256561a
 
0f0c882
c20559f
1948116
3394a6e
1948116
7c3b785
571fea7
 
7c3b785
571fea7
7c3b785
40d77a8
2fdc9bb
4a6ec58
3b61686
 
 
 
 
4a6ec58
da1ffd0
7c8c861
c809ab0
4a6ec58
6a338ab
53586ab
4a6ec58
5600c91
c7b6d08
5600c91
 
3a20d92
5600c91
e36aa58
5600c91
3394a6e
5600c91
3394a6e
3db717c
3394a6e
3a20d92
3394a6e
fc89ea0
3394a6e
c45c1b1
fc89ea0
904c909
 
8b8fe48
c791f22
904c909
 
802de9d
c791f22
 
904c909
 
 
 
c791f22
6b844f6
904c909
802de9d
fc89ea0
904c909
8b8fe48
c791f22
7e54217
7c3b785
c7b6d08
 
07be141
 
 
67de2bd
07be141
6b844f6
2111435
6b844f6
7e54217
571fea7
 
677e938
6b844f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
import time
from typing import Tuple, Dict
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.state_manager import StateManager
from my_model.config import inference_config as config


class InferenceRunner(StateManager):

    """
    Manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question Answering (KBVQA) application.
    This class handles image uploads, displays sample images, and facilitates the question-answering process using the KBVQA model.
    Inherits from the StateManager class.
    """
    
    def __init__(self) -> None:
        """
        Initializes the InferenceRunner instance, setting up the necessary state.
        """
        
        super().__init__()


    def answer_question(self, caption: str, detected_objects_str: str, question: str) -> Tuple[str, int]:
        """
        Generates an answer to a user's question based on the image's caption and detected objects.

        Args:
            caption (str): Caption generated for the image.
            detected_objects_str (str): String representation of detected objects in the image.
            question (str): User's question about the image.

        Returns:
            tuple: A tuple containing the answer to the question and the prompt length.
        """
        free_gpu_resources()
        answer = st.session_state.kbvqa.generate_answer(question, caption, detected_objects_str)
        prompt_length  = st.session_state.kbvqa.current_prompt_length
        free_gpu_resources()
        return answer, prompt_length


    def display_sample_images(self) -> None:
        """
        Displays sample images as clickable thumbnails for the user to select.
        """
        
        self.col1.write("Choose from sample images:")
        cols = self.col1.columns(len(config.SAMPLE_IMAGES))
        for idx, sample_image_path in enumerate(config.SAMPLE_IMAGES):
            with cols[idx]:
                image = Image.open(sample_image_path)
                image_for_display = self.resize_image(sample_image_path, 80, 80)
                st.image(image_for_display)
                if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx+1}'):
                    self.process_new_image(sample_image_path, image)

    def handle_image_upload(self) -> None:
        """
        Provides an image uploader widget for the user to upload their own images.
        """
        uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
        if uploaded_image is not None:
            self.process_new_image(uploaded_image.name, Image.open(uploaded_image))

    def display_image_and_analysis(self, image_key: str, image_data: dict, nested_col21, nested_col22) -> None:
        """
        Displays the uploaded or selected image and provides an option to analyze the image.

        Args:
            image_key (str): Unique key identifying the image.
            image_data (dict): Data associated with the image.
            nested_col21 (streamlit column): Column for displaying the image.
            nested_col22 (streamlit column): Column for displaying the analysis button.
        """
        
        image_for_display = self.resize_image(image_data['image'], 600)
        nested_col21.image(image_for_display, caption=f'Uploaded Image: {image_key[-11:]}')
        self.handle_analysis_button(image_key, image_data, nested_col22)

    def handle_analysis_button(self, image_key: str, image_data: dict, nested_col22) -> None:
        """
        Provides an 'Analyze Image' button and processes the image analysis upon click.

        Args:
            image_key (str): Unique key identifying the image.
            image_data (dict): Data associated with the image.
            nested_col22 (streamlit column): Column for displaying the analysis button.
        """
        
        if not image_data['analysis_done'] or self.settings_changed or self.confidance_change:
            nested_col22.text("Please click 'Analyze Image'..")
            analyze_button_key = f'analyze_{image_key}_{st.session_state.detection_model}_{st.session_state.confidence_level}'
            with nested_col22:
                if st.button('Analyze Image', key=analyze_button_key, on_click=self.disable_widgets, disabled=self.is_widget_disabled):
                    with st.spinner('Analyzing the image...'):
                        caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'])
                        self.update_image_data(image_key, caption, detected_objects_str, True)
            st.session_state['loading_in_progress'] = False

    def handle_question_answering(self, image_key: str, image_data: dict, nested_col22) -> None:
        """
        Manages the question-answering interface for each image.

        Args:
            image_key (str): Unique key identifying the image.
            image_data (dict): Data associated with the image.
            nested_col22 (streamlit column): Column for displaying the question-answering interface.
        """
        
        if image_data['analysis_done']:
            self.display_question_answering_interface(image_key, image_data, nested_col22)

        if self.settings_changed or self.confidance_change:
            nested_col22.warning("Confidence level changed, please click 'Analyze Image' each time you change it.")


    def display_question_answering_interface(self, image_key: str, image_data: Dict, nested_col22: st.columns) -> None:
        """
        Displays the interface for question answering, including sample questions and a custom question input.
    
        Args:
            image_key (str): Unique key identifying the image.
            image_data (dict): Data associated with the image.
            nested_col22 (streamlit column): The column where the interface will be displayed.
        """
        
        sample_questions = config.SAMPLE_QUESTIONS.get(image_key, [])
        selected_question = nested_col22.selectbox("Select a sample question or type your own:", ["Custom question..."] + sample_questions, key=f'sample_question_{image_key}')
    
        # Display custom question input only if "Custom question..." is selected
        question = selected_question
        if selected_question == "Custom question...":
            custom_question = nested_col22.text_input("Or ask your own question:", key=f'custom_question_{image_key}')
            question = custom_question
    
        self.process_question(image_key, question, image_data, nested_col22)
    
        qa_history = image_data.get('qa_history', [])
        for num, (q, a, p) in enumerate(qa_history):
            nested_col22.text(f"Q{num+1}: {q}\nA{num+1}: {a}\nPrompt Length: {p}\n")


            
    def process_question(self, image_key: str, question: str, image_data: Dict, nested_col22: st.columns) -> None:
        """
        Processes the user's question, generates an answer, and updates the question-answer history.

        Args:
            image_key (str): Unique key identifying the image.
            question (str): The question asked by the user.
            image_data (Dict): Data associated with the image.
            nested_col22 (streamlit column): The column where the answer will be displayed.

        This method checks if the question is new or if settings have changed, and if so, generates an answer using the KBVQA model.
        It then updates the question-answer history for the image.
        """
        
        qa_history = image_data.get('qa_history', [])
        if question and (question not in [q for q, _, _ in qa_history] or self.settings_changed or self.confidance_change):
            if nested_col22.button('Get Answer', key=f'answer_{image_key}', disabled=self.is_widget_disabled):
                answer, prompt_length = self.answer_question(image_data['caption'], image_data['detected_objects_str'], question)
                self.add_to_qa_history(image_key, question, answer, prompt_length)
               # nested_col22.text(f"Q: {question}\nA: {answer}\nPrompt Length: {prompt_length}")

    def image_qa_app(self) -> None:
        """
        Main application interface for image-based question answering.

        This method orchestrates the display of sample images, handles image uploads, and facilitates the question-answering process.
        It iterates through each image in the session state, displaying the image and providing interfaces for image analysis and question answering.
        """
        
        self.display_sample_images()
        self.handle_image_upload()
        #self.display_session_state(self.col1)
        with self.col2:
            for image_key, image_data in self.get_images_data().items():
                with st.container():
                    nested_col21, nested_col22 = st.columns([0.65, 0.35])
                    self.display_image_and_analysis(image_key, image_data, nested_col21, nested_col22)
                    self.handle_question_answering(image_key, image_data, nested_col22)
                    

        
    def run_inference(self):
        """
        Sets up widgets and manages the inference process, including model loading and reloading,
        based on user interactions.

        This method orchestrates the overall flow of the inference process.
        """
        
        self.set_up_widgets()
  
        load_fine_tuned_model = False
        fine_tuned_model_already_loaded = False
        reload_detection_model = False
        force_reload_full_model = False
        
     
        if self.is_model_loaded and self.settings_changed:
            self.col1.warning("Model settings have changed, please reload the model, this will take a second .. ")
            self.update_prev_state()
         
           
        st.session_state.button_label = "Reload Model" if self.is_model_loaded and st.session_state.kbvqa.detection_model != st.session_state['detection_model'] else "Load Model"
      
        with self.col1:
            if st.session_state.method == "7b-Fine-Tuned Model" or st.session_state.method == "13b-Fine-Tuned Model":
                with st.container():
                    nested_col11, nested_col12 = st.columns([0.5, 0.5])
                    if nested_col11.button(st.session_state.button_label, on_click=self.disable_widgets, disabled=self.is_widget_disabled):
                        if st.session_state.button_label == "Load Model":
                            if self.is_model_loaded:
                                free_gpu_resources()
                                fine_tuned_model_already_loaded = True
                            else:
                                load_fine_tuned_model = True
                        else:
                            reload_detection_model = True
                    if nested_col12.button("Force Reload", on_click=self.disable_widgets, disabled=self.is_widget_disabled):
                        force_reload_full_model = True
                        

                if load_fine_tuned_model:
                    t1=time.time()
                    free_gpu_resources()
                    self.load_model()
                    st.session_state['time_taken_to_load_model'] = int(time.time()-t1)
                    st.session_state['loading_in_progress'] = False
                    
                elif fine_tuned_model_already_loaded:
                    free_gpu_resources()
                    self.col1.text("Model already loaded and no settings were changed:)")
                    st.session_state['loading_in_progress'] = False
                    
                elif reload_detection_model:
                    free_gpu_resources()
                    self.reload_detection_model()
                    st.session_state['loading_in_progress'] = False
                    
                elif force_reload_full_model:
                    free_gpu_resources()
                    t1=time.time()
                    self.force_reload_model()
                    st.session_state['time_taken_to_load_model'] = int(time.time()-t1)
                    st.session_state['loading_in_progress'] = False
                    st.session_state['model_loaded'] = True
                    
           # elif st.session_state.method == "13b-Fine-Tuned Model":
           #     self.col1.warning(f'Model using {st.session_state.method} is not deployed yet, will be ready later.')
                

            elif st.session_state.method == "Learning Visual Embeddings":
                self.col1.warning(f'Model using {st.session_state.method} is desgined but requires large scale data and multiple high-end GPUs, implementation will be explored in the future.')
            
        
        if self.is_model_loaded:
            free_gpu_resources()
            st.session_state['loading_in_progress'] = False
            
            self.image_qa_app() # this is the main Q/A Application