File size: 4,452 Bytes
125214f 4c2fc41 125214f e00ca5f 125214f c3dcca1 125214f c3dcca1 125214f ecd0257 125214f 1a4d79e 125214f 1a4d79e 125214f 1a4d79e 125214f 1a4d79e 125214f 1a4d79e 125214f 1a4d79e 125214f af795cc 923d790 af795cc 923d790 77f9d5b 3d9562e 3d8c333 4ef8835 ffae9a5 040bb8d 6412259 45ef170 756ae8a 72a377a a1bb21b 125214f 6d0a61c 3d9562e 6a8ed60 d5d6538 6a8ed60 125214f 3d9562e 125214f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
from my_model.utilities.state_manager import StateManager
state_manager = StateManager()
def answer_question(caption, detected_objects_str, question, model):
free_gpu_resources()
answer = model.generate_answer(question, caption, detected_objects_str)
free_gpu_resources()
return answer
# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
"Files/sample7.jpg"]
def image_qa_app(kbvqa):
# Display sample images as clickable thumbnails
st.write("Choose from sample images:")
cols = st.columns(len(sample_images))
for idx, sample_image_path in enumerate(sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
st.image(image, use_column_width=True)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
state_manager.process_new_image(sample_image_path, image, kbvqa)
# Image uploader
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
state_manager.process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
# Display and interact with each uploaded/selected image
for image_key, image_data in state_manager.get_images_data().items():
st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-11:]}', use_column_width=True)
if not image_data['analysis_done']:
st.text("Cool image, please click 'Analyze Image'..")
if st.button('Analyze Image', key=f'analyze_{image_key}'):
caption, detected_objects_str, image_with_boxes = state_manager.analyze_image(image_data['image'], kbvqa)
state_manager.update_image_data(image_key, caption, detected_objects_str, True)
# Initialize qa_history for each image
qa_history = image_data.get('qa_history', [])
if image_data['analysis_done']:
question = st.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
if st.button('Get Answer', key=f'answer_{image_key}'):
if question not in [q for q, _ in qa_history]:
answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
state_manager.add_to_qa_history(image_key, question, answer)
# Display Q&A history for each image
for q, a in qa_history:
st.text(f"Q: {q}\nA: {a}\n")
def run_inference():
st.title("Run Inference")
state_manager.initialize_state()
state_manager.set_up_widgets()
st.session_state['settings_changed'] = state_manager.has_state_changed()
if st.session_state['settings_changed']:
st.warning("Model settings have changed, please reload the model, this will take a second .. ")
st.session_state.button_label = "Reload Model" if state_manager.is_model_loaded() and state_manager.settings_changed else "Load Model"
# state_manager.display_session_state()
state_manager.display_model_settings()
state_manager.display_session_state()
if st.session_state.method == "Fine-Tuned Model":
if st.button(st.session_state.button_label):
if st.session_state.button_label == "Load Model":
if state_manager.is_model_loaded():
st.text("Model already loaded and no settings were changed:)")
else: state_manager.load_model()
else:
state_manager.reload_detection_model()
if state_manager.is_model_loaded() and st.session_state.kbvqa.all_models_loaded:
image_qa_app(state_manager.get_model())
else:
st.write(f'Model using {st.session_state.method} is not deplyed yet, will be ready later.')
|