File size: 5,438 Bytes
125214f 4c2fc41 125214f e00ca5f 125214f c3dcca1 125214f c3dcca1 125214f ecd0257 125214f 1a4d79e 125214f 1a4d79e 125214f 1a4d79e 125214f 1a4d79e 125214f 1a4d79e 125214f 1a4d79e 125214f af795cc 923d790 af795cc 923d790 6412259 4ef8835 ffae9a5 6412259 45ef170 125214f a1bb21b 125214f 6d0a61c a1bb21b 1a4d79e 125214f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
from my_model.utilities.state_manager import StateManager
state_manager = StateManager()
def answer_question(caption, detected_objects_str, question, model):
free_gpu_resources()
answer = model.generate_answer(question, caption, detected_objects_str)
free_gpu_resources()
return answer
# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
"Files/sample7.jpg"]
def analyze_image(image, model):
img = copy.deepcopy(image) # we dont wanna apply changes to the original image
caption = model.get_caption(img)
image_with_boxes, detected_objects_str = model.detect_objects(img)
st.text("I am ready, let's talk!")
free_gpu_resources()
return caption, detected_objects_str, image_with_boxes
def image_qa_app(kbvqa):
# Display sample images as clickable thumbnails
st.write("Choose from sample images:")
cols = st.columns(len(sample_images))
for idx, sample_image_path in enumerate(sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
st.image(image, use_column_width=True)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
state_manager.process_new_image(sample_image_path, image, kbvqa)
# Image uploader
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
state_manager.process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
# Display and interact with each uploaded/selected image
for image_key, image_data in state_manager.get_images_data().items():
st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-11:]}', use_column_width=True)
if not image_data['analysis_done']:
st.text("Cool image, please click 'Analyze Image'..")
if st.button('Analyze Image', key=f'analyze_{image_key}'):
caption, detected_objects_str, image_with_boxes = state_manager.analyze_image(image_data['image'], kbvqa)
state_manager.update_image_data(image_key, caption, detected_objects_str, True)
# Initialize qa_history for each image
qa_history = image_data.get('qa_history', [])
if image_data['analysis_done']:
question = st.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
if st.button('Get Answer', key=f'answer_{image_key}'):
if question not in [q for q, _ in qa_history]:
answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
state_manager.add_to_qa_history(image_key, question, answer)
# Display Q&A history for each image
for q, a in qa_history:
st.text(f"Q: {q}\nA: {a}\n")
def process_new_image(image_key, image, kbvqa):
"""Process a new image and update the session state."""
if image_key not in st.session_state['images_data']:
st.session_state['images_data'][image_key] = {
'image': image,
'caption': '',
'detected_objects_str': '',
'qa_history': [],
'analysis_done': False
}
def run_inference():
st.title("Run Inference")
state_manager.initialize_state()
state_manager.set_up_widgets()
st.session_state.button_label = "Reload Model" if state_manager.is_model_loaded() and state_manager.has_state_changed() else "Load Model"
# state_manager.display_session_state()
state_manager.display_model_settings()
if st.session_state.method == "Fine-Tuned Model":
if st.button(button_label):
if button_label == "Load Model":
if state_manager.is_model_loaded():
st.text("Model already loaded and no settings were changed:)")
else: state_manager.load_model()
else:
state_manager.reload_detection_model()
st.success("Model reloaded with updated settings and ready for inference.")
if state_manager.is_model_loaded() and st.session_state.kbvqa.all_models_loaded:
image_qa_app(state_manager.get_model())
else:
st.write('Model is not ready yet, will be updated later.')
def display_model_settings():
st.write("### Current Model Settings:")
st.table(pd.DataFrame(st.session_state['model_settings'], index=[0]))
def display_session_state():
st.write("### Current Session State:")
# Convert session state to a list of dictionaries, each representing a row
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
# Create a DataFrame from the list
df = pd.DataFrame(data)
st.table(df)
|