File size: 2,818 Bytes
38167d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04e05f4
38167d4
 
 
 
 
 
82d483e
846f1f8
57613ba
4392ab5
38167d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import pandas as pd
import streamlit as st
from my_model.tabs.run_inference import run_inference


class UIManager:
    def __init__(self):
        self.tabs = {
            "Home": self.display_home,
            "Dataset Analysis": self.display_dataset_analysis,
            "Finetuning and Evaluation Results": self.display_finetuning_evaluation,
            "Run Inference": self.display_run_inference,
            "Dissertation Report": self.display_dissertation_report,
            "Code": self.display_code,
            "More Pages will follow .. ": self.display_placeholder
        }

    def add_tab(self, tab_name, display_function):
        self.tabs[tab_name] = display_function

    def display_sidebar(self):
        st.sidebar.title("Navigation")
        selection = st.sidebar.radio("Go to", list(self.tabs.keys()))
        #st.sidebar.write("More Pages will follow .. ")
        return selection

    def display_selected_page(self, selection):
        if selection in self.tabs:
            self.tabs[selection]()

    def display_home(self):
        st.title("MultiModal Learning for Visual Question Answering using World Knowledge \n(Knowledge-Based Visual Question Answering)")
        st.write("""This application is an interactive element of the project prepared by [Mohammed Alhaj](https://www.linkedin.com/in/m7mdal7aj) as part of the dissertation for Masters degree in Artificial Intelligence at the University of Bath under the supervision of [Mr. Andreas Theophilou](https://researchportal.bath.ac.uk/en/persons/andreas-theophilou). 
                    \nFurther details will be updated later""")

    def display_dataset_analysis(self):
        st.title("OK-VQA Dataset Analysis")
        st.write("This is a Place Holder until the contents are uploaded.")

    def display_finetuning_evaluation(self):
        st.title("Finetuning and Evaluation Results")
        st.write("This is a Place Holder until the contents are uploaded.")

    def display_run_inference(self):
        run_inference()

    def display_dissertation_report(self):
        st.title("Dissertation Report")
        st.write("Click the link below to view the PDF.")
        st.download_button(
            label="Download PDF",
            data=open("Files/Dissertation Report.pdf", "rb"),
            file_name="example.pdf",
            mime="application/octet-stream"
        )

    def display_code(self):
        st.title("Code")
        st.markdown("You can view the code for this project on the Hugging Face Space file page.")
        st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_PlayGround/tree/main)", unsafe_allow_html=True)

    def display_placeholder(self):
        st.title("Stay Tuned")
        st.write("This is a Place Holder until the contents are uploaded.")