Spaces:
Runtime error
Runtime error
Init
Browse files- app.py +91 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, os.path
|
2 |
+
from os.path import splitext
|
3 |
+
import numpy as np
|
4 |
+
import sys
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
import wget
|
9 |
+
|
10 |
+
|
11 |
+
destination_folder = "output"
|
12 |
+
destination_for_weights = "weights"
|
13 |
+
|
14 |
+
if os.path.exists(destination_for_weights):
|
15 |
+
print("The weights are at", destination_for_weights)
|
16 |
+
else:
|
17 |
+
print("Creating folder at ", destination_for_weights, " to store weights")
|
18 |
+
os.mkdir(destination_for_weights)
|
19 |
+
|
20 |
+
segmentationWeightsURL = 'https://github.com/douyang/EchoNetDynamic/releases/download/v1.0.0/deeplabv3_resnet50_random.pt'
|
21 |
+
|
22 |
+
if not os.path.exists(os.path.join(destination_for_weights, os.path.basename(segmentationWeightsURL))):
|
23 |
+
print("Downloading Segmentation Weights, ", segmentationWeightsURL," to ",os.path.join(destination_for_weights, os.path.basename(segmentationWeightsURL)))
|
24 |
+
filename = wget.download(segmentationWeightsURL, out = destination_for_weights)
|
25 |
+
else:
|
26 |
+
print("Segmentation Weights already present")
|
27 |
+
|
28 |
+
torch.cuda.empty_cache()
|
29 |
+
|
30 |
+
def collate_fn(x):
|
31 |
+
x, f = zip(*x)
|
32 |
+
i = list(map(lambda t: t.shape[1], x))
|
33 |
+
x = torch.as_tensor(np.swapaxes(np.concatenate(x, 1), 0, 1))
|
34 |
+
return x, f, i
|
35 |
+
|
36 |
+
model = torchvision.models.segmentation.deeplabv3_resnet50(pretrained=False, aux_loss=False)
|
37 |
+
model.classifier[-1] = torch.nn.Conv2d(model.classifier[-1].in_channels, 1, kernel_size=model.classifier[-1].kernel_size)
|
38 |
+
|
39 |
+
print("loading weights from ", os.path.join(destination_for_weights, "deeplabv3_resnet50_random"))
|
40 |
+
|
41 |
+
if torch.cuda.is_available():
|
42 |
+
print("cuda is available, original weights")
|
43 |
+
device = torch.device("cuda")
|
44 |
+
model = torch.nn.DataParallel(model)
|
45 |
+
model.to(device)
|
46 |
+
checkpoint = torch.load(os.path.join(destination_for_weights, os.path.basename(segmentationWeightsURL)))
|
47 |
+
model.load_state_dict(checkpoint['state_dict'])
|
48 |
+
else:
|
49 |
+
print("cuda is not available, cpu weights")
|
50 |
+
device = torch.device("cpu")
|
51 |
+
checkpoint = torch.load(os.path.join(destination_for_weights, os.path.basename(segmentationWeightsURL)), map_location = "cpu")
|
52 |
+
state_dict_cpu = {k[7:]: v for (k, v) in checkpoint['state_dict'].items()}
|
53 |
+
model.load_state_dict(state_dict_cpu)
|
54 |
+
|
55 |
+
model.eval()
|
56 |
+
|
57 |
+
def segment(inp):
|
58 |
+
x = inp.transpose([2, 0, 1]) # channels-first
|
59 |
+
x = np.expand_dims(x, axis=0) # adding a batch dimension
|
60 |
+
|
61 |
+
mean = x.mean(axis=(0, 2, 3))
|
62 |
+
std = x.std(axis=(0, 2, 3))
|
63 |
+
x = x - mean.reshape(1, 3, 1, 1)
|
64 |
+
x = x / std.reshape(1, 3, 1, 1)
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
x = torch.from_numpy(x).type('torch.FloatTensor').to(device)
|
68 |
+
output = model(x)
|
69 |
+
|
70 |
+
y = output['out'].numpy()
|
71 |
+
y = y.squeeze()
|
72 |
+
|
73 |
+
out = y>0
|
74 |
+
|
75 |
+
mask = inp.copy()
|
76 |
+
mask[out] = np.array([0, 0, 255])
|
77 |
+
|
78 |
+
return mask
|
79 |
+
|
80 |
+
import gradio as gr
|
81 |
+
|
82 |
+
i = gr.inputs.Image(shape=(112, 112))
|
83 |
+
o = gr.outputs.Image()
|
84 |
+
|
85 |
+
examples = [["img1.jpg"], ["img2.jpg"]]
|
86 |
+
title = None #"Left Ventricle Segmentation"
|
87 |
+
description = "This semantic segmentation model identifies the left ventricle in echocardiogram images."
|
88 |
+
# videos. Accurate evaluation of the motion and size of the left ventricle is crucial for the assessment of cardiac function and ejection fraction. In this interface, the user inputs apical-4-chamber images from echocardiography videos and the model will output a prediction of the localization of the left ventricle in blue. This model was trained on the publicly released EchoNet-Dynamic dataset of 10k echocardiogram videos with 20k expert annotations of the left ventricle and published as part of ‘Video-based AI for beat-to-beat assessment of cardiac function’ by Ouyang et al. in Nature, 2020."
|
89 |
+
thumbnail = "https://raw.githubusercontent.com/gradio-app/hub-echonet/master/thumbnail.png"
|
90 |
+
gr.Interface(segment, i, o, examples=examples, allow_flagging=False, analytics_enabled=False,
|
91 |
+
title=title, description=description, thumbnail=thumbnail).launch()
|
requirements.txt
ADDED
File without changes
|