Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,8 @@ demo.launch()
|
|
17 |
#!pip install accelerate
|
18 |
#!pip install -i
|
19 |
|
|
|
|
|
20 |
import gradio as gr
|
21 |
import torch
|
22 |
from peft import PeftModel, PeftConfig
|
@@ -40,8 +42,8 @@ newmodel = PeftModel.from_pretrained(newmodel, peft_model_id,
|
|
40 |
use_auth_token="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", load_in_8bit=True, device_map='auto')
|
41 |
|
42 |
def givetext(input_text,lmodel,ltokenizer):
|
43 |
-
eval_prompt_pt1 = "
|
44 |
-
eval_prompt_pt2="
|
45 |
eval_prompt=eval_prompt_pt1+input_text+eval_prompt_pt2
|
46 |
print(eval_prompt,"\n\n")
|
47 |
model_input = ltokenizer(eval_prompt, return_tensors="pt").to("cuda")
|
@@ -56,4 +58,37 @@ def mental_chat(message, history):
|
|
56 |
|
57 |
demo = gr.ChatInterface(mental_chat)
|
58 |
|
59 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
#!pip install accelerate
|
18 |
#!pip install -i
|
19 |
|
20 |
+
"""
|
21 |
+
|
22 |
import gradio as gr
|
23 |
import torch
|
24 |
from peft import PeftModel, PeftConfig
|
|
|
42 |
use_auth_token="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", load_in_8bit=True, device_map='auto')
|
43 |
|
44 |
def givetext(input_text,lmodel,ltokenizer):
|
45 |
+
eval_prompt_pt1 = "\nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction: Act like a therapist and respond\n\n### Input: "
|
46 |
+
eval_prompt_pt2="\n\n\n### Response:\n"
|
47 |
eval_prompt=eval_prompt_pt1+input_text+eval_prompt_pt2
|
48 |
print(eval_prompt,"\n\n")
|
49 |
model_input = ltokenizer(eval_prompt, return_tensors="pt").to("cuda")
|
|
|
58 |
|
59 |
demo = gr.ChatInterface(mental_chat)
|
60 |
|
61 |
+
demo.launch()
|
62 |
+
|
63 |
+
"""
|
64 |
+
|
65 |
+
|
66 |
+
import gradio as gr
|
67 |
+
import torch
|
68 |
+
from peft import PeftModel, PeftConfig
|
69 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
70 |
+
|
71 |
+
peft_model_id = "charansr/llama2-7b-chat-hf-therapist"
|
72 |
+
|
73 |
+
# Load the Lora model
|
74 |
+
newmodel = PeftModel.from_pretrained(peft_model_id, use_auth_token="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")
|
75 |
+
|
76 |
+
newtokenizer = AutoTokenizer.from_pretrained(peft_model_id, use_auth_token="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")
|
77 |
+
|
78 |
+
def givetext(input_text, lmodel, ltokenizer):
|
79 |
+
eval_prompt_pt1 = """\nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction: Act like a therapist and respond\n\n### Input: """
|
80 |
+
eval_prompt_pt2 = """\n\n\n### Response:\n"""
|
81 |
+
eval_prompt = eval_prompt_pt1 + input_text + eval_prompt_pt2
|
82 |
+
print(eval_prompt, "\n\n")
|
83 |
+
model_input = ltokenizer(eval_prompt, return_tensors="pt").to("cuda")
|
84 |
+
|
85 |
+
lmodel.eval()
|
86 |
+
with torch.no_grad():
|
87 |
+
return ltokenizer.decode(lmodel.generate(**model_input, max_new_tokens=1000)[0], skip_special_tokens=True)
|
88 |
+
|
89 |
+
def mental_chat(message, history):
|
90 |
+
return givetext(message, newmodel, newtokenizer)
|
91 |
+
|
92 |
+
demo = gr.ChatInterface(mental_chat)
|
93 |
+
|
94 |
+
demo.launch()
|