ukrainian-stt-et / deepspeech /import_ukrainian.py
Yurii Paniv
Reorganize repo
1f211a9
raw
history blame
9.42 kB
#!/usr/bin/env python
"""
This script transforms custom dataset, gathered from Internet into
DeepSpeech-ready .csv file
Use "python3 import_ukrainian.py -h" for help
"""
import csv
import os
import subprocess
import unicodedata
from multiprocessing import Pool
import progressbar
import sox
from deepspeech_training.util.downloader import SIMPLE_BAR
from deepspeech_training.util.importers import (
get_counter,
get_imported_samples,
get_importers_parser,
get_validate_label,
print_import_report,
)
from ds_ctcdecoder import Alphabet
import re
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
SAMPLE_RATE = 16000
CHANNELS = 1
MAX_SECS = 10
PARAMS = None
FILTER_OBJ = None
AUDIO_DIR = None
class LabelFilter:
def __init__(self, normalize, alphabet, validate_fun):
self.normalize = normalize
self.alphabet = alphabet
self.validate_fun = validate_fun
def filter(self, label):
if self.normalize:
label = unicodedata.normalize("NFKD", label.strip()).encode(
"ascii", "ignore").decode("ascii", "ignore")
label = self.validate_fun(label)
if self.alphabet and label and not self.alphabet.CanEncode(label):
label = None
return label
def init_worker(params):
global FILTER_OBJ # pylint: disable=global-statement
global AUDIO_DIR # pylint: disable=global-statement
AUDIO_DIR = params.audio_dir if params.audio_dir else os.path.join(
params.tsv_dir, "clips")
validate_label = get_validate_label(params)
alphabet = Alphabet(
params.filter_alphabet) if params.filter_alphabet else None
FILTER_OBJ = LabelFilter(params.normalize, alphabet, validate_label)
def one_sample(sample):
""" Take an audio file, and optionally convert it to 16kHz WAV """
global AUDIO_DIR
source_filename = sample[0]
if not os.path.splitext(source_filename.lower())[1] == ".wav":
source_filename += ".wav"
# Storing wav files next to the mp3 ones - just with a different suffix
output_filename = f"{sample[2]}.wav"
output_filepath = os.path.join(AUDIO_DIR, output_filename)
_maybe_convert_wav(source_filename, output_filepath)
file_size = -1
frames = 0
if os.path.exists(output_filepath):
file_size = os.path.getsize(output_filepath)
if file_size == 0:
frames = 0
else:
frames = int(
subprocess.check_output(
["soxi", "-s", output_filepath], stderr=subprocess.STDOUT
)
)
label = FILTER_OBJ.filter(sample[1])
rows = []
counter = get_counter()
if file_size == -1:
# Excluding samples that failed upon conversion
counter["failed"] += 1
elif label is None:
# Excluding samples that failed on label validation
counter["invalid_label"] += 1
# + 1 added for filtering surname dataset with too short audio files
elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)) + 1:
# Excluding samples that are too short to fit the transcript
counter["too_short"] += 1
elif frames / SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter["too_long"] += 1
else:
# This one is good - keep it for the target CSV
rows.append((os.path.split(output_filename)
[-1], file_size, label, sample[2]))
counter["imported_time"] += frames
counter["all"] += 1
counter["total_time"] += frames
return (counter, rows)
def convert_transcript(transcript):
transcript = transcript.replace("'", "’")
# transcript = transcript.replace("-", " ")
return transcript.strip()
def _maybe_convert_set(dataset_dir, audio_dir, filter_obj, space_after_every_character=None, rows=None):
# iterate over all data lists and write converted version near them
speaker_iterator = 1
samples = []
total_file_dict = dict()
for subdir, dirs, files in os.walk(dataset_dir):
for file in files:
# Get audiofile path and transcript for each sentence in tsv
if file.endswith(".data"):
file_path = os.path.join(subdir, file)
file = open(file_path, mode="r")
data = []
file_folder = os.path.join(
os.path.dirname(subdir), "wav")
file_dict = dict()
for row in file.readlines():
if row.isspace():
continue
splitted_row = row.replace("\n", "").replace(
" wav ", ".wav ").split(" ", 1)
if len(splitted_row) != 2:
continue
file_name, transcript = splitted_row
if file_name.endswith(".wav"):
pass
elif file_name.endswith(".mp3"):
pass
elif file_name.find(".") == -1:
file_name += ".wav"
if file_name.startswith("/"):
file_name = file_name[1::]
file_name = os.path.join(dataset_dir, file_name)
file_dict[file_name] = convert_transcript(transcript)
file.close()
for wav_subdir, wav_dirs, wav_files in os.walk(file_folder):
for wav_file in wav_files:
wav_file_path = os.path.join(wav_subdir, wav_file)
if file_dict.get(wav_file_path) is not None:
total_file_dict[wav_file_path] = file_dict[wav_file_path]
for key in total_file_dict.keys():
samples.append((key, total_file_dict[key], speaker_iterator))
speaker_iterator += 1
del(total_file_dict)
if rows is None:
rows = []
counter = get_counter()
num_samples = len(samples)
print("Importing dataset files...")
pool = Pool(initializer=init_worker, initargs=(PARAMS,))
bar = progressbar.ProgressBar(
max_value=num_samples, widgets=SIMPLE_BAR)
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
counter += processed[0]
rows += processed[1]
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
imported_samples = get_imported_samples(counter)
assert counter["all"] == num_samples
assert len(rows) == imported_samples
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
output_csv = os.path.join(os.path.abspath(audio_dir), "train.csv")
print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
with open(output_csv, "w", encoding="utf-8", newline="") as output_csv_file:
print("Writing CSV file for DeepSpeech.py as: ", output_csv)
writer = csv.DictWriter(output_csv_file, fieldnames=FIELDNAMES)
writer.writeheader()
bar = progressbar.ProgressBar(
max_value=len(rows), widgets=SIMPLE_BAR)
for filename, file_size, transcript, speaker in bar(rows):
if space_after_every_character:
writer.writerow(
{
"wav_filename": filename,
"wav_filesize": file_size,
"transcript": " ".join(transcript),
}
)
else:
writer.writerow(
{
"wav_filename": filename,
"wav_filesize": file_size,
"transcript": transcript,
}
)
return rows
def _preprocess_data(tsv_dir, audio_dir, space_after_every_character=False):
set_samples = _maybe_convert_set(
tsv_dir, audio_dir, space_after_every_character)
def _maybe_convert_wav(mp3_filename, wav_filename):
if not os.path.exists(wav_filename):
transformer = sox.Transformer()
transformer.convert(samplerate=SAMPLE_RATE, n_channels=CHANNELS)
try:
transformer.build(mp3_filename, wav_filename)
except Exception as e: # TODO: improve exception handling
pass
def parse_args():
parser = get_importers_parser(
description="Import CommonVoice v2.0 corpora")
parser.add_argument("tsv_dir", help="Directory containing tsv files")
parser.add_argument(
"--audio_dir",
help='Directory containing the audio clips - defaults to "<tsv_dir>/clips"',
)
parser.add_argument(
"--filter_alphabet",
help="Exclude samples with characters not in provided alphabet",
)
parser.add_argument(
"--normalize",
action="store_true",
help="Converts diacritic characters to their base ones",
)
parser.add_argument(
"--space_after_every_character",
action="store_true",
help="To help transcript join by white space",
)
return parser.parse_args()
def main():
audio_dir = PARAMS.audio_dir if PARAMS.audio_dir else os.path.join(
PARAMS.tsv_dir, "clips")
_preprocess_data(PARAMS.tsv_dir, audio_dir,
PARAMS.space_after_every_character)
if __name__ == "__main__":
PARAMS = parse_args()
main()