lombardata's picture
Update app.py
70151b2 verified
raw
history blame
2.87 kB
import numpy as np
import gradio as gr
# teo
import torch
from transformers import Dinov2Config, Dinov2Model, Dinov2ForImageClassification, AutoImageProcessor
import torch.nn as nn
import os
# Load PyTorch model
def create_head(num_features , number_classes ,dropout_prob=0.5 ,activation_func =nn.ReLU):
features_lst = [num_features , num_features//2 , num_features//4]
layers = []
for in_f ,out_f in zip(features_lst[:-1] , features_lst[1:]):
layers.append(nn.Linear(in_f , out_f))
layers.append(activation_func())
layers.append(nn.BatchNorm1d(out_f))
if dropout_prob !=0 : layers.append(nn.Dropout(dropout_prob))
layers.append(nn.Linear(features_lst[-1] , number_classes))
return nn.Sequential(*layers)
class NewheadDinov2ForImageClassification(Dinov2ForImageClassification):
def __init__(self, config: Dinov2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.dinov2 = Dinov2Model(config)
# Classifier head
self.classifier = create_head(config.hidden_size * 2, config.num_labels)
# IMPORT CLASSIFICATION MODEL
checkpoint_name = "lombardata/dino-base-2023_11_27-with_custom_head"
# import labels
classes_names = ["Acropore_branched", "Acropore_digitised", "Acropore_tabular", "Algae_assembly",
"Algae_limestone", "Algae_sodding", "Dead_coral", "Fish", "Human_object",
"Living_coral", "Millepore", "No_acropore_encrusting", "No_acropore_massive",
"No_acropore_sub_massive", "Rock", "Sand",
"Scrap", "Sea_cucumber", "Syringodium_isoetifolium",
"Thalassodendron_ciliatum", "Useless"]
classes_nb = list(np.arange(len(classes_names)))
id2label = {int(classes_nb[i]): classes_names[i] for i in range(len(classes_nb))}
label2id = {v: k for k, v in id2label.items()}
model = NewheadDinov2ForImageClassification.from_pretrained(checkpoint_name)
def sigmoid(_outputs):
return 1.0 / (1.0 + np.exp(-_outputs))
def predict(input_image):
image_processor = AutoImageProcessor.from_pretrained(checkpoint_name)
# predict
inputs = image_processor(input_image, return_tensors="pt")
inputs = inputs
with torch.no_grad():
model_outputs = model(**inputs)
outputs = model_outputs["logits"][0]
scores = sigmoid(outputs)
result = {}
i = 0
for score in scores:
label = id2label[i]
result[label] = float(score)
i += 1
result = {key: result[key] for key in result if result[key] > 0.5}
return result
gr.Interface(
fn=predict,
inputs=gr.Image(shape=(224, 224)),
#outputs=gr.Label(num_top_classes=5),
outputs="label",
examples=[
"Dalbergia oliveri.JPG",
"Eucalyptus.JPG",
"Khaya senegalensis.JPG",
"Syzygium nervosum.JPG",
]
).launch()