File size: 29,312 Bytes
8bedda3 72650c2 c3df5b3 8130dc1 8bedda3 c3df5b3 8bedda3 72650c2 1edf6fb 8bedda3 df02c32 72650c2 8bedda3 1edf6fb 8bedda3 1edf6fb e121d4e 13ecd9b 1edf6fb 72650c2 e022a14 df2a130 0bcfc15 df2a130 99bab3b e022a14 99bab3b df2a130 1edf6fb 7e04c2f bf3bf20 1edf6fb 72650c2 8bedda3 72650c2 8bedda3 72650c2 5fb2c04 72650c2 1edf6fb 6ed21d5 1edf6fb ed08878 13ecd9b ed08878 13ecd9b ed08878 13ecd9b ed08878 0bcfc15 fc39491 13ecd9b fc39491 f61ae52 1edf6fb fc39491 13ecd9b fc39491 13ecd9b ed08878 99bab3b 0bcfc15 ed08878 13ecd9b 1edf6fb ca548d8 ed08878 13ecd9b ed08878 1edf6fb 9b416dc 99bab3b 0bcfc15 99bab3b 0bcfc15 99bab3b ed08878 1edf6fb e022a14 72650c2 1edf6fb 72650c2 8bedda3 ce16823 e022a14 99bab3b 72650c2 1edf6fb 72650c2 1edf6fb df2a130 ed08878 99bab3b e022a14 ed08878 1edf6fb fa37411 1edf6fb 99bab3b 1edf6fb fa37411 1edf6fb df2a130 1edf6fb ed08878 e022a14 1edf6fb 8bedda3 72650c2 8bedda3 13ecd9b 99bab3b 13ecd9b 99bab3b 13ecd9b e022a14 13ecd9b e022a14 99bab3b 0ba05dc 13ecd9b 99bab3b 13ecd9b 99bab3b 13ecd9b 99bab3b 13ecd9b 99bab3b 13ecd9b e022a14 ed08878 e022a14 1edf6fb 67596d5 49e21e1 1edf6fb 8bedda3 ed08878 9b416dc 4ed001b e022a14 9b416dc ed08878 4ed001b 9b416dc ed08878 e121d4e ed08878 e121d4e ed08878 dcb1547 f0939aa ed5bd07 f0939aa ed5bd07 b1245be f0939aa ed5bd07 9b416dc 8bedda3 72650c2 e121d4e 4ed001b 8bedda3 e121d4e cbcf31f 9b416dc 8bedda3 72650c2 1edf6fb 72650c2 8bedda3 c3df5b3 fc39491 c3df5b3 8130dc1 fc39491 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import gradio as gr
import numpy as np
import pandas as pd
# notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing"
notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK"
basic_component_values = [None] * 6
leader_component_values = [None] * 5
def make_default_md(arena_df, elo_results):
total_votes = sum(arena_df["num_battles"]) // 2
total_models = len(arena_df)
leaderboard_md = f"""
# π LMSYS Chatbot Arena Leaderboard
| [Vote](https://chat.lmsys.org) | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
LMSYS [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) is a crowdsourced open platform for LLM evals.
We've collected over **500,000** human preference votes to rank LLMs with the Elo ranking system. Contribute your vote π³οΈ at [chat.lmsys.org](https://chat.lmsys.org)!
Code to recreate leaderboard tables and plots in this [notebook]({notebook_url}) and more discussions in this blog [post](https://lmsys.org/blog/2023-12-07-leaderboard/).
"""
return leaderboard_md
def make_arena_leaderboard_md(arena_df):
total_votes = sum(arena_df["num_battles"]) // 2
total_models = len(arena_df)
space = " "
leaderboard_md = f"""
Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: April 9, 2024.
π£ **NEW!** View leaderboard for different categories (e.g., coding, long user query)!
"""
return leaderboard_md
def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
total_votes = sum(arena_df["num_battles"]) // 2
total_models = len(arena_df)
space = " "
total_subset_votes = sum(arena_subset_df["num_battles"]) // 2
total_subset_models = len(arena_subset_df)
leaderboard_md = f"""### {cat_name_to_explanation[name]}
#### [Coverage] {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space}
"""
return leaderboard_md
def make_full_leaderboard_md(elo_results):
leaderboard_md = f"""
Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**.
- [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 500K+ user votes to compute Elo ratings.
- [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks.
π» Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).
The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval).
Higher values are better for all benchmarks. Empty cells mean not available.
"""
return leaderboard_md
def make_leaderboard_md_live(elo_results):
leaderboard_md = f"""
# Leaderboard
Last updated: {elo_results["last_updated_datetime"]}
{elo_results["leaderboard_table"]}
"""
return leaderboard_md
def update_elo_components(max_num_files, elo_results_file):
log_files = get_log_files(max_num_files)
# Leaderboard
if elo_results_file is None: # Do live update
battles = clean_battle_data(log_files)
elo_results = report_elo_analysis_results(battles)
leader_component_values[0] = make_leaderboard_md_live(elo_results)
leader_component_values[1] = elo_results["win_fraction_heatmap"]
leader_component_values[2] = elo_results["battle_count_heatmap"]
leader_component_values[3] = elo_results["bootstrap_elo_rating"]
leader_component_values[4] = elo_results["average_win_rate_bar"]
# Basic stats
basic_stats = report_basic_stats(log_files)
md0 = f"Last updated: {basic_stats['last_updated_datetime']}"
md1 = "### Action Histogram\n"
md1 += basic_stats["action_hist_md"] + "\n"
md2 = "### Anony. Vote Histogram\n"
md2 += basic_stats["anony_vote_hist_md"] + "\n"
md3 = "### Model Call Histogram\n"
md3 += basic_stats["model_hist_md"] + "\n"
md4 = "### Model Call (Last 24 Hours)\n"
md4 += basic_stats["num_chats_last_24_hours"] + "\n"
basic_component_values[0] = md0
basic_component_values[1] = basic_stats["chat_dates_bar"]
basic_component_values[2] = md1
basic_component_values[3] = md2
basic_component_values[4] = md3
basic_component_values[5] = md4
def update_worker(max_num_files, interval, elo_results_file):
while True:
tic = time.time()
update_elo_components(max_num_files, elo_results_file)
durtaion = time.time() - tic
print(f"update duration: {durtaion:.2f} s")
time.sleep(max(interval - durtaion, 0))
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
return basic_component_values + leader_component_values
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if h == "Arena Elo rating":
if v != "-":
v = int(ast.literal_eval(v))
else:
v = np.nan
elif h == "MMLU":
if v != "-":
v = round(ast.literal_eval(v) * 100, 1)
else:
v = np.nan
elif h == "MT-bench (win rate %)":
if v != "-":
v = round(ast.literal_eval(v[:-1]), 1)
else:
v = np.nan
elif h == "MT-bench (score)":
if v != "-":
v = round(ast.literal_eval(v), 2)
else:
v = np.nan
item[h] = v
if add_hyperlink:
item["Model"] = model_hyperlink(item["Model"], item["Link"])
rows.append(item)
return rows
def build_basic_stats_tab():
empty = "Loading ..."
basic_component_values[:] = [empty, None, empty, empty, empty, empty]
md0 = gr.Markdown(empty)
gr.Markdown("#### Figure 1: Number of model calls and votes")
plot_1 = gr.Plot(show_label=False)
with gr.Row():
with gr.Column():
md1 = gr.Markdown(empty)
with gr.Column():
md2 = gr.Markdown(empty)
with gr.Row():
with gr.Column():
md3 = gr.Markdown(empty)
with gr.Column():
md4 = gr.Markdown(empty)
return [md0, plot_1, md1, md2, md3, md4]
def get_full_table(arena_df, model_table_df):
values = []
for i in range(len(model_table_df)):
row = []
model_key = model_table_df.iloc[i]["key"]
model_name = model_table_df.iloc[i]["Model"]
# model display name
row.append(model_name)
if model_key in arena_df.index:
idx = arena_df.index.get_loc(model_key)
row.append(round(arena_df.iloc[idx]["rating"]))
else:
row.append(np.nan)
row.append(model_table_df.iloc[i]["MT-bench (score)"])
row.append(model_table_df.iloc[i]["MMLU"])
# Organization
row.append(model_table_df.iloc[i]["Organization"])
# license
row.append(model_table_df.iloc[i]["License"])
values.append(row)
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
return values
def create_ranking_str(ranking, ranking_difference):
if ranking_difference > 0:
# return f"{int(ranking)} (\u2191{int(ranking_difference)})"
return f"{int(ranking)} \u2191"
elif ranking_difference < 0:
# return f"{int(ranking)} (\u2193{int(-ranking_difference)})"
return f"{int(ranking)} \u2193"
else:
return f"{int(ranking)}"
def recompute_final_ranking(arena_df):
# compute ranking based on CI
ranking = {}
for i, model_a in enumerate(arena_df.index):
ranking[model_a] = 1
for j, model_b in enumerate(arena_df.index):
if i == j:
continue
if arena_df.loc[model_b]["rating_q025"] > arena_df.loc[model_a]["rating_q975"]:
ranking[model_a] += 1
return list(ranking.values())
def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
arena_df = arena_df[arena_df["num_battles"] > 2000]
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
arena_df = arena_df.sort_values(by=["final_ranking"], ascending=True)
# arena_df["final_ranking"] = range(1, len(arena_df) + 1)
# sort by rating
if arena_subset_df is not None:
# filter out models not in the arena_df
arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
# arena_subset_df = arena_subset_df.sort_values(by=["final_ranking"], ascending=True)
# arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 500]
arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
# keep only the models in the subset in arena_df and recompute final_ranking
arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
# recompute final ranking
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
# assign ranking by the order
arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
# join arena_df and arena_subset_df on index
arena_df = arena_subset_df.join(arena_df["final_ranking"], rsuffix="_global", how="inner")
arena_df["ranking_difference"] = arena_df["final_ranking_global"] - arena_df["final_ranking"]
# no tie version
# arena_df = arena_subset_df.join(arena_df["final_ranking_no_tie"], rsuffix="_global", how="inner")
# arena_df["ranking_difference"] = arena_df["final_ranking_no_tie_global"] - arena_df["final_ranking_no_tie"]
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
arena_df["final_ranking"] = arena_df.apply(lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1)
values = []
for i in range(len(arena_df)):
row = []
model_key = arena_df.index[i]
try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models)
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
0
]
# rank
ranking = arena_df.iloc[i].get("final_ranking") or i+1
row.append(ranking)
if arena_subset_df is not None:
row.append(arena_df.iloc[i].get("ranking_difference") or 0)
# model display name
row.append(model_name)
# elo rating
row.append(round(arena_df.iloc[i]["rating"]))
upper_diff = round(
arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
)
lower_diff = round(
arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
)
row.append(f"+{upper_diff}/-{lower_diff}")
# num battles
row.append(round(arena_df.iloc[i]["num_battles"]))
# Organization
row.append(
model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
)
# license
row.append(
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
)
cutoff_date = model_table_df[model_table_df["key"] == model_key]["Knowledge cutoff date"].values[0]
if cutoff_date == "-":
row.append("Unknown")
else:
row.append(cutoff_date)
values.append(row)
except Exception as e:
print(f"{model_key} - {e}")
return values
key_to_category_name = {
"full": "Overall",
"coding": "Coding",
"long_user": "Longer Query",
"english": "English",
"chinese": "Chinese",
"no_tie": "Exclude Ties",
"no_short": "Exclude Short",
}
cat_name_to_explanation = {
"Overall": "Overall Questions",
"Coding": "Coding: whether conversation contains code snippets",
"Longer Query": "Longer Query (>= 500 tokens)",
"English": "English Prompts",
"Chinese": "Chinese Prompts",
"Exclude Ties": "Exclude Ties and Bothbad",
"Exclude Short": "User Query >= 5 tokens",
}
def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False):
arena_dfs = {}
category_elo_results = {}
if elo_results_file is None: # Do live update
default_md = "Loading ..."
p1 = p2 = p3 = p4 = None
else:
with open(elo_results_file, "rb") as fin:
elo_results = pickle.load(fin)
if "full" in elo_results:
print("KEYS ", elo_results.keys())
for k in elo_results.keys():
for k in key_to_category_name:
arena_dfs[key_to_category_name[k]] = elo_results[k]["leaderboard_table_df"]
category_elo_results[key_to_category_name[k]] = elo_results[k]
p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
p2 = category_elo_results["Overall"]["battle_count_heatmap"]
p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
p4 = category_elo_results["Overall"]["average_win_rate_bar"]
arena_df = arena_dfs["Overall"]
default_md = make_default_md(arena_df, category_elo_results["Overall"])
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
if leaderboard_table_file:
data = load_leaderboard_table_csv(leaderboard_table_file)
model_table_df = pd.DataFrame(data)
with gr.Tabs() as tabs:
# arena table
arena_table_vals = get_arena_table(arena_df, model_table_df)
with gr.Tab("Arena Elo", id=0):
md = make_arena_leaderboard_md(arena_df)
leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
with gr.Row():
with gr.Column(scale=2):
category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall")
default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall")
with gr.Column(scale=4, variant="panel"):
category_deets = gr.Markdown(default_category_details, elem_id="category_deets")
elo_display_df = gr.Dataframe(
headers=[
"Rank",
"π€ Model",
"β Arena Elo",
"π 95% CI",
"π³οΈ Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"number",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
value=arena_table_vals,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 110, 100, 90, 160, 150, 140],
wrap=True,
)
gr.Markdown(
f"""Note: we take the 95% confidence interval into account when determining a model's ranking.
A model is ranked higher only if its lower bound of model score is higher than the upper bound of the other model's score.
See Figure 3 below for visualization of the confidence intervals. Code to recreate these tables and plots in this [notebook]({notebook_url}) and more discussions in this blog [post](https://lmsys.org/blog/2023-12-07-leaderboard/).
""",
elem_id="leaderboard_markdown"
)
leader_component_values[:] = [default_md, p1, p2, p3, p4]
if show_plot:
more_stats_md = gr.Markdown(
f"""## More Statistics for Chatbot Arena (Overall)""",
elem_id="leaderboard_header_markdown"
)
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles", elem_id="plot-title"
)
plot_1 = gr.Plot(p1, show_label=False, elem_id="plot-container")
with gr.Column():
gr.Markdown(
"#### Figure 2: Battle Count for Each Combination of Models (without Ties)", elem_id="plot-title"
)
plot_2 = gr.Plot(p2, show_label=False)
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 3: Confidence Intervals on Model Strength (via Bootstrapping)", elem_id="plot-title"
)
plot_3 = gr.Plot(p3, show_label=False)
with gr.Column():
gr.Markdown(
"#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)", elem_id="plot-title"
)
plot_4 = gr.Plot(p4, show_label=False)
with gr.Tab("Full Leaderboard", id=1):
md = make_full_leaderboard_md(elo_results)
gr.Markdown(md, elem_id="leaderboard_markdown")
full_table_vals = get_full_table(arena_df, model_table_df)
gr.Dataframe(
headers=[
"π€ Model",
"β Arena Elo",
"π MT-bench",
"π MMLU",
"Organization",
"License",
],
datatype=["markdown", "number", "number", "number", "str", "str"],
value=full_table_vals,
elem_id="full_leaderboard_dataframe",
column_widths=[200, 100, 100, 100, 150, 150],
height=700,
wrap=True,
)
if not show_plot:
gr.Markdown(
""" ## Visit our [HF space](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) for more analysis!
If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model).
""",
elem_id="leaderboard_markdown",
)
else:
pass
def update_leaderboard_df(arena_table_vals):
elo_datarame = pd.DataFrame(arena_table_vals, columns=[ "Rank", "Delta", "π€ Model", "β Arena Elo", "π 95% CI", "π³οΈ Votes", "Organization", "License", "Knowledge Cutoff"])
# goal: color the rows based on the rank with styler
def highlight_max(s):
# all items in S which contain up arrow should be green, down arrow should be red, otherwise black
return ["color: green; font-weight: bold" if "\u2191" in v else "color: red; font-weight: bold" if "\u2193" in v else "" for v in s]
def highlight_rank_max(s):
return ["color: green; font-weight: bold" if v > 0 else "color: red; font-weight: bold" if v < 0 else "" for v in s]
return elo_datarame.style.apply(highlight_max, subset=["Rank"]).apply(highlight_rank_max, subset=["Delta"])
def update_leaderboard_and_plots(category):
arena_subset_df = arena_dfs[category]
arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 500]
elo_subset_results = category_elo_results[category]
arena_df = arena_dfs["Overall"]
arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None)
if category != "Overall":
arena_values = update_leaderboard_df(arena_values)
arena_values = gr.Dataframe(
headers=[
"Rank",
"Delta",
"π€ Model",
"β Arena Elo",
"π 95% CI",
"π³οΈ Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"number",
"number",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
value=arena_values,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[60, 70, 190, 110, 100, 90, 160, 150, 140],
wrap=True,
)
else:
arena_values = gr.Dataframe(
headers=[
"Rank",
"π€ Model",
"β Arena Elo",
"π 95% CI",
"π³οΈ Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"number",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
value=arena_values,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 110, 100, 90, 160, 150, 140],
wrap=True,
)
p1 = elo_subset_results["win_fraction_heatmap"]
p2 = elo_subset_results["battle_count_heatmap"]
p3 = elo_subset_results["bootstrap_elo_rating"]
p4 = elo_subset_results["average_win_rate_bar"]
more_stats_md = f"""## More Statistics for Chatbot Arena - {category}
"""
leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md
category_dropdown.change(update_leaderboard_and_plots, inputs=[category_dropdown], outputs=[elo_display_df, plot_1, plot_2, plot_3, plot_4, more_stats_md, category_deets])
with gr.Accordion(
"π Citation",
open=True,
):
citation_md = """
### Citation
Please cite the following paper if you find our leaderboard or dataset helpful.
```
@misc{chiang2024chatbot,
title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
year={2024},
eprint={2403.04132},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
"""
gr.Markdown(citation_md, elem_id="leaderboard_markdown")
gr.Markdown(acknowledgment_md)
if show_plot:
return [md_1, plot_1, plot_2, plot_3, plot_4]
return [md_1]
block_css = """
#notice_markdown {
font-size: 104%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#category_deets {
text-align: center;
padding: 0px;
}
#leaderboard_markdown {
font-size: 104%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_header_markdown {
font-size: 104%;
text-align: center;
display:block;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
#plot-title {
text-align: center;
display:block;
}
#non-interactive-button {
display: inline-block;
padding: 10px 10px;
background-color: #f7f7f7; /* Super light grey background */
text-align: center;
font-size: 26px; /* Larger text */
border-radius: 0; /* Straight edges, no border radius */
border: 0px solid #dcdcdc; /* A light grey border to match the background */
user-select: none; /* The text inside the button is not selectable */
pointer-events: none; /* The button is non-interactive */
}
footer {
display:none !important
}
.sponsor-image-about img {
margin: 0 20px;
margin-top: 20px;
height: 40px;
max-height: 100%;
width: auto;
float: left;
}
"""
acknowledgment_md = """
### Acknowledgment
We thank [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous [sponsorship](https://lmsys.org/donations/).
<div class="sponsor-image-about">
<img src="https://storage.googleapis.com/public-arena-asset/kaggle.png" alt="Kaggle">
<img src="https://storage.googleapis.com/public-arena-asset/mbzuai.jpeg" alt="MBZUAI">
<img src="https://storage.googleapis.com/public-arena-asset/a16z.jpeg" alt="a16z">
<img src="https://storage.googleapis.com/public-arena-asset/together.png" alt="Together AI">
<img src="https://storage.googleapis.com/public-arena-asset/anyscale.png" alt="AnyScale">
<img src="https://storage.googleapis.com/public-arena-asset/huggingface.png" alt="HuggingFace">
</div>
"""
def build_demo(elo_results_file, leaderboard_table_file):
text_size = gr.themes.sizes.text_lg
theme = gr.themes.Base(text_size=text_size)
theme.set(button_secondary_background_fill_hover="*primary_300",
button_secondary_background_fill_hover_dark="*primary_700")
with gr.Blocks(
title="Chatbot Arena Leaderboard",
theme=theme,
# theme = gr.themes.Base.load("theme.json"), # uncomment to use new cool theme
css=block_css,
) as demo:
leader_components = build_leaderboard_tab(
elo_results_file, leaderboard_table_file, show_plot=True
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
args = parser.parse_args()
elo_result_files = glob.glob("elo_results_*.pkl")
elo_result_files.sort(key=lambda x: int(x[12:-4]))
elo_result_file = elo_result_files[-1]
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
leaderboard_table_file = leaderboard_table_files[-1]
demo = build_demo(elo_result_file, leaderboard_table_file)
demo.launch(share=args.share, server_name=args.host, server_port=args.port)
|