Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os | |
from typing import Sequence | |
import mmcv | |
from mmdet.apis import inference_detector, init_detector | |
from mmengine import Config, DictAction | |
from mmengine.registry import init_default_scope | |
from mmengine.utils import ProgressBar | |
from mmyolo.registry import VISUALIZERS | |
from mmyolo.utils.misc import auto_arrange_images, get_file_list | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Visualize feature map') | |
parser.add_argument( | |
'img', help='Image path, include image file, dir and URL.') | |
parser.add_argument('config', help='Config file') | |
parser.add_argument('checkpoint', help='Checkpoint file') | |
parser.add_argument( | |
'--out-dir', default='./output', help='Path to output file') | |
parser.add_argument( | |
'--target-layers', | |
default=['backbone'], | |
nargs='+', | |
type=str, | |
help='The target layers to get feature map, if not set, the tool will ' | |
'specify the backbone') | |
parser.add_argument( | |
'--preview-model', | |
default=False, | |
action='store_true', | |
help='To preview all the model layers') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference') | |
parser.add_argument( | |
'--score-thr', type=float, default=0.3, help='Bbox score threshold') | |
parser.add_argument( | |
'--show', action='store_true', help='Show the featmap results') | |
parser.add_argument( | |
'--channel-reduction', | |
default='select_max', | |
help='Reduce multiple channels to a single channel') | |
parser.add_argument( | |
'--topk', | |
type=int, | |
default=4, | |
help='Select topk channel to show by the sum of each channel') | |
parser.add_argument( | |
'--arrangement', | |
nargs='+', | |
type=int, | |
default=[2, 2], | |
help='The arrangement of featmap when channel_reduction is ' | |
'not None and topk > 0') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
class ActivationsWrapper: | |
def __init__(self, model, target_layers): | |
self.model = model | |
self.activations = [] | |
self.handles = [] | |
self.image = None | |
for target_layer in target_layers: | |
self.handles.append( | |
target_layer.register_forward_hook(self.save_activation)) | |
def save_activation(self, module, input, output): | |
self.activations.append(output) | |
def __call__(self, img_path): | |
self.activations = [] | |
results = inference_detector(self.model, img_path) | |
return results, self.activations | |
def release(self): | |
for handle in self.handles: | |
handle.remove() | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
init_default_scope(cfg.get('default_scope', 'mmyolo')) | |
channel_reduction = args.channel_reduction | |
if channel_reduction == 'None': | |
channel_reduction = None | |
assert len(args.arrangement) == 2 | |
model = init_detector(args.config, args.checkpoint, device=args.device) | |
if not os.path.exists(args.out_dir) and not args.show: | |
os.mkdir(args.out_dir) | |
if args.preview_model: | |
print(model) | |
print('\n This flag is only show model, if you want to continue, ' | |
'please remove `--preview-model` to get the feature map.') | |
return | |
target_layers = [] | |
for target_layer in args.target_layers: | |
try: | |
target_layers.append(eval(f'model.{target_layer}')) | |
except Exception as e: | |
print(model) | |
raise RuntimeError('layer does not exist', e) | |
activations_wrapper = ActivationsWrapper(model, target_layers) | |
# init visualizer | |
visualizer = VISUALIZERS.build(model.cfg.visualizer) | |
visualizer.dataset_meta = model.dataset_meta | |
# get file list | |
image_list, source_type = get_file_list(args.img) | |
progress_bar = ProgressBar(len(image_list)) | |
for image_path in image_list: | |
result, featmaps = activations_wrapper(image_path) | |
if not isinstance(featmaps, Sequence): | |
featmaps = [featmaps] | |
flatten_featmaps = [] | |
for featmap in featmaps: | |
if isinstance(featmap, Sequence): | |
flatten_featmaps.extend(featmap) | |
else: | |
flatten_featmaps.append(featmap) | |
img = mmcv.imread(image_path) | |
img = mmcv.imconvert(img, 'bgr', 'rgb') | |
if source_type['is_dir']: | |
filename = os.path.relpath(image_path, args.img).replace('/', '_') | |
else: | |
filename = os.path.basename(image_path) | |
out_file = None if args.show else os.path.join(args.out_dir, filename) | |
# show the results | |
shown_imgs = [] | |
visualizer.add_datasample( | |
'result', | |
img, | |
data_sample=result, | |
draw_gt=False, | |
show=False, | |
wait_time=0, | |
out_file=None, | |
pred_score_thr=args.score_thr) | |
drawn_img = visualizer.get_image() | |
for featmap in flatten_featmaps: | |
shown_img = visualizer.draw_featmap( | |
featmap[0], | |
drawn_img, | |
channel_reduction=channel_reduction, | |
topk=args.topk, | |
arrangement=args.arrangement) | |
shown_imgs.append(shown_img) | |
shown_imgs = auto_arrange_images(shown_imgs) | |
progress_bar.update() | |
if out_file: | |
mmcv.imwrite(shown_imgs[..., ::-1], out_file) | |
if args.show: | |
visualizer.show(shown_imgs) | |
if not args.show: | |
print(f'All done!' | |
f'\nResults have been saved at {os.path.abspath(args.out_dir)}') | |
# Please refer to the usage tutorial: | |
# https://github.com/open-mmlab/mmyolo/blob/main/docs/zh_cn/user_guides/visualization.md # noqa | |
if __name__ == '__main__': | |
main() | |