File size: 43,413 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
{
  "cells": [
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "x7seefPduh36"
      },
      "source": [
        "<div align=\"center\">\n",
        "  <img width=\"600\" src=\"https://github.com/open-mmlab/mmyolo/raw/main/resources/mmyolo-logo.png\"/>\n",
        "  <div>&nbsp;</div>\n",
        "  <div align=\"center\">\n",
        "    <b><font size=\"5\">OpenMMLab website</font></b>\n",
        "    <sup>\n",
        "      <a href=\"https://openmmlab.com\">\n",
        "        <i><font size=\"4\">HOT</font></i>\n",
        "      </a>\n",
        "    </sup>\n",
        "    &nbsp;&nbsp;&nbsp;&nbsp;\n",
        "    <b><font size=\"5\">OpenMMLab platform</font></b>\n",
        "    <sup>\n",
        "      <a href=\"https://platform.openmmlab.com\">\n",
        "        <i><font size=\"4\">TRY IT OUT</font></i>\n",
        "      </a>\n",
        "    </sup>\n",
        "  </div>\n",
        "  <div>&nbsp;</div>\n",
        "\n",
        "<a href=\"https://colab.research.google.com/github/open-mmlab/mmyolo/blob/dev/demo/15_minutes_object_detection.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
        "\n",
        "[![PyPI](https://img.shields.io/pypi/v/mmyolo)](https://pypi.org/project/mmyolo)\n",
        "[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmyolo.readthedocs.io/en/latest/)\n",
        "[![deploy](https://github.com/open-mmlab/mmyolo/workflows/deploy/badge.svg)](https://github.com/open-mmlab/mmyolo/actions)\n",
        "[![codecov](https://codecov.io/gh/open-mmlab/mmyolo/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmyolo)\n",
        "[![license](https://img.shields.io/github/license/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/blob/main/LICENSE)\n",
        "[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues)\n",
        "[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues)\n",
        "\n",
        "[πŸ“˜Documentation](https://mmyolo.readthedocs.io/en/latest/) |\n",
        "[πŸ› οΈInstallation](https://mmyolo.readthedocs.io/en/latest/get_started/installation.html) |\n",
        "[πŸ‘€Model Zoo](https://mmyolo.readthedocs.io/en/latest/model_zoo.html) |\n",
        "[πŸ†•Update News](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html) |\n",
        "[πŸ€”Reporting Issues](https://github.com/open-mmlab/mmyolo/issues/new/choose)\n",
        "\n",
        "</div>\n",
        "\n",
        "<div align=\"center\">\n",
        "  <a href=\"https://openmmlab.medium.com/\" style=\"text-decoration:none;\">\n",
        "    <img src=\"https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png\" width=\"3%\" alt=\"\" /></a>\n",
        "  <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
        "  <a href=\"https://discord.com/channels/1037617289144569886/1046608014234370059\" style=\"text-decoration:none;\">\n",
        "    <img src=\"https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png\" width=\"3%\" alt=\"\" /></a>\n",
        "  <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
        "  <a href=\"https://twitter.com/OpenMMLab\" style=\"text-decoration:none;\">\n",
        "    <img src=\"https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png\" width=\"3%\" alt=\"\" /></a>\n",
        "  <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
        "  <a href=\"https://www.youtube.com/openmmlab\" style=\"text-decoration:none;\">\n",
        "    <img src=\"https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png\" width=\"3%\" alt=\"\" /></a>\n",
        "  <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
        "  <a href=\"https://space.bilibili.com/1293512903\" style=\"text-decoration:none;\">\n",
        "    <img src=\"https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png\" width=\"3%\" alt=\"\" /></a>\n",
        "  <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
        "  <a href=\"https://www.zhihu.com/people/openmmlab\" style=\"text-decoration:none;\">\n",
        "    <img src=\"https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png\" width=\"3%\" alt=\"\" /></a>\n",
        "</div>"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "V6W8P5XEJGoc"
      },
      "source": [
        "# 15 minutes to get started with MMYOLO object detection\n",
        "\n",
        "Object detection task refers to that given a picture, the network predicts all the categories of objects included in the picture and the corresponding boundary boxes\n",
        "\n",
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/220232979-fffa480b-9ae6-4601-8af6-4116265dc650.png\" alt=\"object detection\" width=\"800\"/>\n",
        "</div>\n",
        "\n",
        "Take the small dataset of cat as an example, you can easily learn MMYOLO object detection in 15 minutes. The whole process consists of the following steps:\n",
        "\n",
        "- [Installation](#installation)\n",
        "- [Dataset](#dataset)\n",
        "- [Config](#config)\n",
        "- [Training](#training)\n",
        "- [Testing](#testing)\n",
        "- [EasyDeploy](#easydeploy-deployment)\n",
        "\n",
        "In this tutorial, we take YOLOv5-s as an example. For the rest of the YOLO series algorithms, please see the corresponding algorithm configuration folder."
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "Ae5SqsA7wYGQ"
      },
      "source": [
        "## Installation\n",
        "\n",
        "Assuming you've already installed Conda in advance, then install PyTorch using the following commands."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "XVLRaEIzwW-6",
        "outputId": "901b5db6-b1d7-4830-e746-485ee76d6648"
      },
      "outputs": [],
      "source": [
        "# -----------------------------------------------------------------------------------------\n",
        "# If you are using colab, you can skip this cell for PyTorch is pre-installed on the colab.\n",
        "# -----------------------------------------------------------------------------------------\n",
        "!python -V\n",
        "# Check nvcc version\n",
        "!nvcc -V\n",
        "# Check GCC version\n",
        "!gcc --version\n",
        "# Create a new Conda environment\n",
        "%conda create -n mmyolo python=3.8 -y\n",
        "%conda activate mmyolo\n",
        "# If you have GPU\n",
        "%conda install pytorch torchvision -c pytorch\n",
        "# If you only have CPU\n",
        "# %conda install pytorch torchvision cpuonly -c pytorch"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Check PyTorch version\n",
        "import torch\n",
        "print(torch.__version__)\n",
        "print(torch.cuda.is_available())"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Install MMYOLO and dependency libraries using the following commands.\n",
        "For details about how to configure the environment, see [Installation and verification](https://mmyolo.readthedocs.io/en/latest/get_started/installation.html).\n",
        "```{note}\n",
        "Note: Since this repo uses OpenMMLab 2.0, it is better to create a new conda virtual environment to prevent conflicts with the repo installed in OpenMMLab 1.0.\n",
        "```"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "-qATUuntwmfD",
        "outputId": "24be577b-efce-46f2-8b2f-a65d02824467"
      },
      "outputs": [],
      "source": [
        "!git clone https://github.com/open-mmlab/mmyolo.git\n",
        "%cd mmyolo\n",
        "%pip install -U openmim\n",
        "!mim install -r requirements/mminstall.txt\n",
        "# Install albumentations\n",
        "!mim install -r requirements/albu.txt\n",
        "# Install MMYOLO\n",
        "!mim install -v -e .\n",
        "# \"-v\" means verbose, or more output\n",
        "# \"-e\" means installing a project in editable mode,\n",
        "# thus any local modifications made to the code will take effect without reinstallation."
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Dataset\n",
        "\n",
        "The Cat dataset is a single-category dataset consisting of 144 pictures (the original pictures are provided by @RangeKing, and cleaned by @PeterH0323), which contains the annotation information required for training. The sample image is shown below:\n",
        "\n",
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/25873202/205423220-c4b8f2fd-22ba-4937-8e47-1b3f6a8facd8.png\" alt=\"cat dataset\"/>\n",
        "</div>\n",
        "\n",
        "You can download and use it directly by the following command:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "gMQXwWuIw3ef",
        "outputId": "c8efeac7-5b0c-4342-b5af-d3e790e358c3"
      },
      "outputs": [],
      "source": [
        "!python tools/misc/download_dataset.py --dataset-name cat --save-dir ./data/cat --unzip --delete"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "covQskXXw2ul"
      },
      "source": [
        "This dataset is automatically downloaded to the `./data/cat` dir with the following directory structure:\n",
        "\n",
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/220072078-48b88a08-6179-483e-b8d3-0549e1b465de.png\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "The cat dataset is located in the mmyolo project dir, and `data/cat/annotations` stores annotations in COCO format, and `data/cat/images` stores all images\n",
        "\n",
        "## Config\n",
        "\n",
        "Taking YOLOv5 algorithm as an example, considering the limited GPU memory of users, we need to modify some default training parameters to make them run smoothly. The key parameters to be modified are as follows:\n",
        "\n",
        "- YOLOv5 is an Anchor-Based algorithm, and different datasets need to calculate suitable anchors adaptively\n",
        "- The default config uses 8 GPUs with a batch size of 16 per GPU. Now change it to a single GPU with a batch size of 12.\n",
        "- The default training epoch is 300. Change it to 40 epoch\n",
        "- Given the small size of the dataset, we opted to use fixed backbone weights\n",
        "- In principle, the learning rate should be linearly scaled accordingly when the batch size is changed, but actual measurements have found that this is not necessary\n",
        "\n",
        "Create a `yolov5_s-v61_fast_1xb12-40e_cat.py` config file in the `configs/yolov5` folder (we have provided this config for you to use directly) and copy the following into the config file.\n",
        "\n",
        "```python\n",
        "# Inherit and overwrite part of the config based on this config\n",
        "_base_ = 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'\n",
        "\n",
        "data_root = './data/cat/' # dataset root\n",
        "class_name = ('cat', ) # dataset category name\n",
        "num_classes = len(class_name) # dataset category number\n",
        "# metainfo is a configuration that must be passed to the dataloader, otherwise it is invalid\n",
        "# palette is a display color for category at visualization\n",
        "# The palette length must be greater than or equal to the length of the classes\n",
        "metainfo = dict(classes=class_name, palette=[(20, 220, 60)])\n",
        "\n",
        "# Adaptive anchor based on tools/analysis_tools/optimize_anchors.py\n",
        "anchors = [\n",
        "    [(68, 69), (154, 91), (143, 162)],  # P3/8\n",
        "    [(242, 160), (189, 287), (391, 207)],  # P4/16\n",
        "    [(353, 337), (539, 341), (443, 432)]  # P5/32\n",
        "]\n",
        "# Max training 40 epoch\n",
        "max_epochs = 40\n",
        "# bs = 12\n",
        "train_batch_size_per_gpu = 12\n",
        "# dataloader num workers\n",
        "train_num_workers = 4\n",
        "\n",
        "# load COCO pre-trained weight\n",
        "load_from = 'https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth'  # noqa\n",
        "\n",
        "model = dict(\n",
        "    # Fixed the weight of the entire backbone without training\n",
        "    backbone=dict(frozen_stages=4),\n",
        "    bbox_head=dict(\n",
        "        head_module=dict(num_classes=num_classes),\n",
        "        prior_generator=dict(base_sizes=anchors)\n",
        "    ))\n",
        "\n",
        "train_dataloader = dict(\n",
        "    batch_size=train_batch_size_per_gpu,\n",
        "    num_workers=train_num_workers,\n",
        "    dataset=dict(\n",
        "        data_root=data_root,\n",
        "        metainfo=metainfo,\n",
        "        # Dataset annotation file of json path\n",
        "        ann_file='annotations/trainval.json',\n",
        "        # Dataset prefix\n",
        "        data_prefix=dict(img='images/')))\n",
        "\n",
        "val_dataloader = dict(\n",
        "    dataset=dict(\n",
        "        metainfo=metainfo,\n",
        "        data_root=data_root,\n",
        "        ann_file='annotations/test.json',\n",
        "        data_prefix=dict(img='images/')))\n",
        "\n",
        "test_dataloader = val_dataloader\n",
        "\n",
        "_base_.optim_wrapper.optimizer.batch_size_per_gpu = train_batch_size_per_gpu\n",
        "\n",
        "val_evaluator = dict(ann_file=data_root + 'annotations/test.json')\n",
        "test_evaluator = val_evaluator\n",
        "\n",
        "default_hooks = dict(\n",
        "    # Save weights every 10 epochs and a maximum of two weights can be saved.\n",
        "    # The best model is saved automatically during model evaluation\n",
        "    checkpoint=dict(interval=10, max_keep_ckpts=2, save_best='auto'),\n",
        "    # The warmup_mim_iter parameter is critical.\n",
        "    # The default value is 1000 which is not suitable for cat datasets.\n",
        "    param_scheduler=dict(max_epochs=max_epochs, warmup_mim_iter=10),\n",
        "    # The log printing interval is 5\n",
        "    logger=dict(type='LoggerHook', interval=5))\n",
        "# The evaluation interval is 10\n",
        "train_cfg = dict(max_epochs=max_epochs, val_interval=10)\n",
        "```\n",
        "\n",
        "The above config is inherited from `yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py`. According to the characteristics of cat dataset updated `data_root`, `metainfo`, `train_dataloader`, `val_dataloader`, `num_classes` and other config.\n",
        "\n",
        "## Training"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "!python tools/train.py configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "TQ0h6sv_rJxq"
      },
      "source": [
        "Run the above training command, `work_dirs/yolov5_s-v61_fast_1xb12-40e_cat` folder will be automatically generated, the checkpoint file and the training config file will be saved in this folder. On a low-end 1660 GPU, the entire training process takes about eight minutes.\n",
        "\n",
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/220236361-bd113606-248e-4a0e-a484-c0dc9e355b5b.png\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "The performance on `test.json` is as follows:\n",
        "\n",
        "```text\n",
        " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.631\n",
        " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.909\n",
        " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.747\n",
        " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n",
        " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000\n",
        " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.631\n",
        " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.627\n",
        " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.703\n",
        " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.703\n",
        " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000\n",
        " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000\n",
        " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.703\n",
        "```\n",
        "\n",
        "The above properties are printed via the COCO API, where -1 indicates that no object exists for the scale. According to the rules defined by COCO, the Cat dataset contains all large sized objects, and there are no small or medium-sized objects.\n",
        "\n",
        "### Some Notes\n",
        "\n",
        "Two key warnings are printed during training:\n",
        "\n",
        "- You are using `YOLOv5Head` with num_classes == 1. The loss_cls will be 0. This is a normal phenomenon.\n",
        "- The model and loaded state dict do not match exactly\n",
        "\n",
        "Neither of these warnings will have any impact on performance. The first warning is because the `num_classes` currently trained is 1, the loss of the classification branch is always 0 according to the community of the YOLOv5 algorithm, which is a normal phenomenon. The second warning is because we are currently training in fine-tuning mode, we load the COCO pre-trained weights for 80 classes,\n",
        "This will lead to the final Head module convolution channel number does not correspond, resulting in this part of the weight can not be loaded, which is also a normal phenomenon.\n",
        "\n",
        "### Training is resumed after the interruption\n",
        "\n",
        "If you stop training, you can add `--resume` to the end of the training command and the program will automatically resume training with the latest weights file from `work_dirs`."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "!python tools/train.py configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py --resume"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "3sJxvQoUrMhX"
      },
      "source": [
        "### Save GPU memory strategy\n",
        "\n",
        "The above config requires about 3G RAM, so if you don't have enough, consider turning on mixed-precision training"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "!python tools/train.py configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py --amp"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "jVJdyHTxrQ9a"
      },
      "source": [
        "### Training visualization\n",
        "\n",
        "MMYOLO currently supports local, TensorBoard, WandB and other back-end visualization. The default is to use local visualization, and you can switch to WandB and other real-time visualization of various indicators in the training process.\n",
        "\n",
        "#### 1 WandB\n",
        "\n",
        "WandB visualization need registered in website, and in the https://wandb.ai/settings for wandb API Keys.\n",
        "\n",
        "<div align=center>\n",
        "<img src=\"https://cdn.vansin.top/img/20220913212628.png\" alt=\"image\"/>\n",
        "</div>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "%pip install wandb\n",
        "# After running wandb login, enter the API Keys obtained above, and the login is successful.\n",
        "!wandb login"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "Yu0_4YYRrbyY"
      },
      "source": [
        "Add the wandb config at the end of config file we just created: `configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py`.\n",
        "\n",
        "```python\n",
        "visualizer = dict(vis_backends = [dict(type='LocalVisBackend'), dict(type='WandbVisBackend')])\n",
        "```\n",
        "\n",
        "Running the training command and you will see the loss, learning rate, and coco/bbox_mAP visualizations in the link."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "!python tools/train.py configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "f_DyzfDIzwMa"
      },
      "source": [
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/222131114-30a79285-56bc-427d-a38d-8d6a6982ad60.png\" alt=\"image\"/>\n",
        "</div>\n",
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/222132585-4b4962f1-211b-46f7-86b3-7534fc52a1b4.png\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "#### 2 Tensorboard\n",
        "\n",
        "Install Tensorboard using the following command."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "gHkGlii3n29Q"
      },
      "outputs": [],
      "source": [
        "%pip install tensorboard"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "bE-nx9TY1P-M"
      },
      "source": [
        "Add the `tensorboard` config at the end of config file we just created: `configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py`.\n",
        "\n",
        "```python\n",
        "visualizer = dict(vis_backends=[dict(type='LocalVisBackend'),dict(type='TensorboardVisBackend')])\n",
        "```\n",
        "\n",
        "After re-running the training command, Tensorboard file will be generated in the visualization folder `work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/{timestamp}/vis_data`.\n",
        "We can use Tensorboard to view the loss, learning rate, and coco/bbox_mAP visualizations from a web link by running the following command:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "g8fZgokho5CE"
      },
      "outputs": [],
      "source": [
        "!tensorboard --logdir=work_dirs/yolov5_s-v61_fast_1xb12-40e_cat"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "GUZ7MPoaro-o"
      },
      "source": [
        "## Testing"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "VYmxtE0GunTB",
        "outputId": "f440807c-1931-4810-b76d-617f73fde227"
      },
      "outputs": [],
      "source": [
        "!python tools/test.py configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "                      work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/epoch_40.pth \\\n",
        "                      --show-dir show_results"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "_cFocUqN0BCb"
      },
      "source": [
        "Run the above test command, you can not only get the AP performance printed in the **Training** section, You can also automatically save the result images to the `work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/{timestamp}/show_results` folder. Below is one of the result images, the left image is the actual annotation, and the right image is the inference result of the model.\n",
        "\n",
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/220251677-6c7e5c8f-9417-4803-97fc-a968d0172ab7.png\" alt=\"result_img\"/>\n",
        "</div>\n",
        "\n",
        "You can also visualize model inference results in a browser window if you use 'WandbVisBackend' or 'TensorboardVisBackend'.\n",
        "\n",
        "## Feature map visualization\n",
        "\n",
        "MMYOLO provides visualization scripts for feature map to analyze the current model training. Please refer to [Feature Map Visualization](../recommended_topics/visualization.md)\n",
        "\n",
        "Due to the bias of direct visualization of `test_pipeline`, we need modify the `test_pipeline` of `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py`,\n",
        "\n",
        "```python\n",
        "test_pipeline = [\n",
        "    dict(\n",
        "        type='LoadImageFromFile',\n",
        "        file_client_args=_base_.file_client_args),\n",
        "    dict(type='YOLOv5KeepRatioResize', scale=img_scale),\n",
        "    dict(\n",
        "        type='LetterResize',\n",
        "        scale=img_scale,\n",
        "        allow_scale_up=False,\n",
        "        pad_val=dict(img=114)),\n",
        "    dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),\n",
        "    dict(\n",
        "        type='mmdet.PackDetInputs',\n",
        "        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',\n",
        "                   'scale_factor', 'pad_param'))\n",
        "]\n",
        "```\n",
        "\n",
        "to the following config:\n",
        "\n",
        "```python\n",
        "test_pipeline = [\n",
        "    dict(\n",
        "        type='LoadImageFromFile',\n",
        "        file_client_args=_base_.file_client_args),\n",
        "    dict(type='mmdet.Resize', scale=img_scale, keep_ratio=False), # modify the LetterResize to mmdet.Resize\n",
        "    dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),\n",
        "    dict(\n",
        "        type='mmdet.PackDetInputs',\n",
        "        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',\n",
        "                   'scale_factor'))\n",
        "]\n",
        "```\n",
        "\n",
        "Let's choose the `data/cat/images/IMG_20221020_112705.jpg` image as an example to visualize the output feature maps of YOLOv5 backbone and neck layers.\n",
        "\n",
        "**1. Visualize the three channels of YOLOv5 backbone**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "!python demo/featmap_vis_demo.py data/cat/images/IMG_20221020_112705.jpg \\\n",
        "                                 configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "                                 work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/epoch_40.pth \\\n",
        "                                 --target-layers backbone \\\n",
        "                                 --channel-reduction squeeze_mean"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/220292217-b343a6f4-0c88-4fdb-9680-35d0ff8e5bdb.png\" width=\"800\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "The result will be saved to the output folder in current path. Three output feature maps plotted in the above figure correspond to small, medium and large output feature maps. As the backbone of this training is not actually involved in training, it can be seen from the above figure that the big object cat is predicted on the small feature map, which is in line with the idea of hierarchical detection of object detection.\n",
        "\n",
        "**2. Visualize the three channels of YOLOv5 neck**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "!python demo/featmap_vis_demo.py data/cat/images/IMG_20221020_112705.jpg \\\n",
        "                                 configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "                                 work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/epoch_40.pth \\\n",
        "                                 --target-layers neck \\\n",
        "                                 --channel-reduction squeeze_mean"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/220293382-0a241415-e717-4688-a718-5f6d5c844785.png\" width=\"800\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "As can be seen from the above figure, because neck is involved in training, and we also reset anchor, the three output feature maps are forced to simulate the same scale object, resulting in the three output maps of neck are similar, which destroys the original pre-training distribution of backbone. At the same time, it can also be seen that 40 epochs are not enough to train the above dataset, and the feature maps do not perform well.\n",
        "\n",
        "**3. Grad-Based CAM visualization**\n",
        "\n",
        "Based on the above feature map visualization, we can analyze Grad CAM at the feature layer of bbox level.\n",
        "\n",
        "Install `grad-cam` package:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "%pip install \"grad-cam\""
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "(a) View Grad CAM of the minimum output feature map of the neck"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "!python demo/boxam_vis_demo.py data/cat/images/IMG_20221020_112705.jpg \\\n",
        "                                configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "                                work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/epoch_40.pth \\\n",
        "                                --target-layer neck.out_layers[2]"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "9v-dMkePvHMg"
      },
      "source": [
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/220298462-b0631f27-2366-4864-915a-a4ee21acd4b9.png\" width=\"800\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "(b) View Grad CAM of the medium output feature map of the neck"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "p9H9u0A-3KAD",
        "outputId": "32ca5a56-052f-4930-f53c-41cc3a9dc619"
      },
      "outputs": [],
      "source": [
        "!python demo/boxam_vis_demo.py data/cat/images/IMG_20221020_112705.jpg \\\n",
        "                               configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "                               work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/epoch_40.pth \\\n",
        "                               --target-layer neck.out_layers[1]"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "(c) View Grad CAM of the maximum output feature map of the neck"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "MrKan1U43uUY",
        "outputId": "690f8414-a76b-4fa6-e600-7cc874ce1914"
      },
      "outputs": [],
      "source": [
        "!python demo/boxam_vis_demo.py data/cat/images/IMG_20221020_112705.jpg \\\n",
        "                               configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "                               work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/epoch_40.pth \\\n",
        "                               --target-layer neck.out_layers[0]"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/17425982/220297905-e23369db-d383-48f9-b15e-528a70ec7b23.png\" width=\"800\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "## EasyDeploy deployment\n",
        "\n",
        "Here we'll use MMYOLO's [EasyDeploy](../../../projects/easydeploy/) to demonstrate the transformation deployment and basic inference of model.\n",
        "\n",
        "First you need to follow EasyDeploy's [basic documentation](../../../projects/easydeploy/docs/model_convert.md) controls own equipment installed for each library.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "%pip install onnx\n",
        "%pip install onnx-simplifier # Install if you want to use simplify\n",
        "%pip install tensorrt        # If you have GPU environment and need to output TensorRT model you need to continue execution"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Once installed, you can use the following command to transform and deploy the trained model on the cat dataset with one click. The current ONNX version is 1.13.0 and TensorRT version is 8.5.3.1, so keep the `--opset` value of 11. The remaining parameters need to be adjusted according to the config used. Here we export the CPU version of ONNX with the `--backend` set to 1."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 534
        },
        "id": "YsRFEecU5C0w",
        "outputId": "c26011d4-2836-4715-cd6b-68836294db33"
      },
      "outputs": [],
      "source": [
        "!python projects/easydeploy/tools/export.py \\\n",
        "\t    configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "\t    work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/epoch_40.pth \\\n",
        "\t    --work-dir work_dirs/yolov5_s-v61_fast_1xb12-40e_cat \\\n",
        "        --img-size 640 640 \\\n",
        "        --batch 1 \\\n",
        "        --device cpu \\\n",
        "        --simplify \\\n",
        "\t    --opset 11 \\\n",
        "\t    --backend 1 \\\n",
        "\t    --pre-topk 1000 \\\n",
        "\t    --keep-topk 100 \\\n",
        "\t    --iou-threshold 0.65 \\\n",
        "\t    --score-threshold 0.25\n"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "q1EY415x3Idx"
      },
      "source": [
        "On success, you will get the converted ONNX model under `work-dir`, which is named `end2end.onnx` by default.\n",
        "\n",
        "Let's use `end2end.onnx` model to perform a basic image inference:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "!python projects/easydeploy/tools/image-demo.py \\\n",
        "        data/cat/images/IMG_20210728_205312.jpg \\\n",
        "        configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "        work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/end2end.onnx \\\n",
        "        --device cpu"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "IrjiBa5YwDQM"
      },
      "source": [
        "After successful inference, the result image will be generated in the `output` folder of the default MMYOLO root directory. If you want to see the result without saving it, you can add `--show` to the end of the above command. For convenience, the following is the generated result.\n",
        "\n",
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/7219519/221061210-b91e0b5b-652d-4dfc-8451-86a9a36f7d04.png\" width=\"800\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "Let's go on to convert the engine file for TensorRT, because TensorRT needs to be specific to the current environment and deployment version, so make sure to export the parameters, here we export the TensorRT8 file, the `--backend` is 2."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "d8zxczqiBLoB"
      },
      "outputs": [],
      "source": [
        "!python projects/easydeploy/tools/export.py \\\n",
        "        configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "        work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/epoch_40.pth \\\n",
        "        --work-dir work_dirs/yolov5_s-v61_fast_1xb12-40e_cat \\\n",
        "        --img-size 640 640 \\\n",
        "        --batch 1 \\\n",
        "        --device cuda:0 \\\n",
        "        --simplify \\\n",
        "        --opset 11 \\\n",
        "        --backend 2 \\\n",
        "        --pre-topk 1000 \\\n",
        "        --keep-topk 100 \\\n",
        "        --iou-threshold 0.65 \\\n",
        "        --score-threshold 0.25"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "The resulting `end2end.onnx` is the ONNX file for the TensorRT8 deployment, which we will use to complete the TensorRT engine transformation."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "QFh8rIsX_kVw",
        "outputId": "c5bd6929-03a8-400e-be1e-581f32b23f61"
      },
      "outputs": [],
      "source": [
        "!python projects/easydeploy/tools/build_engine.py \\\n",
        "        work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/end2end.onnx \\\n",
        "        --img-size 640 640 \\\n",
        "        --device cuda:0"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Successful execution will generate the `end2end.engine` file under `work-dir`:\n",
        "\n",
        "```shell\n",
        "work_dirs/yolov5_s-v61_fast_1xb12-40e_cat\n",
        "β”œβ”€β”€ 202302XX_XXXXXX\n",
        "β”‚   β”œβ”€β”€ 202302XX_XXXXXX.log\n",
        "β”‚   └── vis_data\n",
        "β”‚       β”œβ”€β”€ 202302XX_XXXXXX.json\n",
        "β”‚       β”œβ”€β”€ config.py\n",
        "β”‚       └── scalars.json\n",
        "β”œβ”€β”€ best_coco\n",
        "β”‚   └── bbox_mAP_epoch_40.pth\n",
        "β”œβ”€β”€ end2end.engine\n",
        "β”œβ”€β”€ end2end.onnx\n",
        "β”œβ”€β”€ epoch_30.pth\n",
        "β”œβ”€β”€ epoch_40.pth\n",
        "β”œβ”€β”€ last_checkpoint\n",
        "└── yolov5_s-v61_fast_1xb12-40e_cat.py\n",
        "```\n",
        "\n",
        "Let's continue use `image-demo.py` for image inference:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "rOqXEi-jAI7Y",
        "outputId": "2a21aaaa-d4ba-498a-f985-2a6a2b8d348f"
      },
      "outputs": [],
      "source": [
        "!python projects/easydeploy/tools/image-demo.py \\\n",
        "        data/cat/images/IMG_20210728_205312.jpg \\\n",
        "        configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py \\\n",
        "        work_dirs/yolov5_s-v61_fast_1xb12-40e_cat/end2end.engine \\\n",
        "        --device cuda:0"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "metadata": {
        "id": "ocHGUUEA_TjI"
      },
      "source": [
        "<div align=center>\n",
        "<img src=\"https://user-images.githubusercontent.com/7219519/221061291-e7490bb6-5f0c-45ab-9fc4-caf2b62419d6.png\" width=\"800\" alt=\"image\"/>\n",
        "</div>\n",
        "\n",
        "This completes the transformation deployment of the trained model and checks the inference results. This is the end of the tutorial.\n",
        "\n",
        "If you encounter problems during training or testing, please check the [common troubleshooting steps](https://mmyolo.readthedocs.io/en/dev/recommended_topics/troubleshooting_steps.html) first and feel free to open an [issue](https://github.com/open-mmlab/mmyolo/issues/new/choose) if you still can't solve it.\n"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "provenance": [],
      "toc_visible": true
    },
    "gpuClass": "standard",
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}