Spaces:
Running
Running
File size: 4,043 Bytes
a660631 f521e88 a660631 cce8954 a660631 84448a9 a660631 cce8954 f521e88 da031b9 f521e88 d5479f6 f521e88 d5479f6 f521e88 a660631 f521e88 da031b9 f521e88 8fad46e a660631 f521e88 a660631 af5481e cce8954 a660631 ae34a8d 3c4344e a660631 3c4344e a660631 ae34a8d 3c4344e a660631 f521e88 a660631 f521e88 a660631 f521e88 a660631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
#!/usr/bin/env python
import gradio as gr
from settings import (
DEFAULT_IMAGE_RESOLUTION,
DEFAULT_NUM_IMAGES,
MAX_IMAGE_RESOLUTION,
MAX_NUM_IMAGES,
MAX_SEED,
)
from utils import randomize_seed_fn
examples = [
[
"images/hed/hed_demo.jpeg",
"Language trip to Laon",
],
]
def create_demo(process):
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image()
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
preprocessor_name = gr.Radio(
label="Preprocessor",
choices=[
"HED",
"PidiNet",
"HED safe",
"PidiNet safe",
"None",
],
type="value",
value="HED",
)
num_samples = gr.Slider(
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=MAX_IMAGE_RESOLUTION,
value=DEFAULT_IMAGE_RESOLUTION,
step=256,
)
preprocess_resolution = gr.Slider(
label="Preprocess resolution", minimum=128, maximum=512, value=512, step=1
)
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(label="Additional prompt", value="high-quality, extremely detailed, 4K")
n_prompt = gr.Textbox(
label="Negative prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
)
with gr.Column():
result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")
gr.Examples(
examples=examples,
inputs=[
image,
prompt,
guidance_scale,
seed,
],
outputs=result,
fn=process,
)
inputs = [
image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
preprocessor_name,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=result,
api_name="softedge",
)
return demo
if __name__ == "__main__":
from model import Model
model = Model(task_name="softedge")
demo = create_demo(model.process_softedge)
demo.queue().launch()
|