File size: 4,043 Bytes
a660631
 
 
 
f521e88
 
 
 
 
 
 
a660631
 
cce8954
 
 
 
 
 
a660631
84448a9
a660631
 
 
cce8954
 
f521e88
 
 
 
 
 
 
 
 
 
 
 
da031b9
f521e88
 
 
 
d5479f6
f521e88
d5479f6
 
 
f521e88
 
a660631
f521e88
 
 
da031b9
f521e88
 
8fad46e
a660631
f521e88
 
a660631
 
af5481e
cce8954
 
 
 
 
 
 
 
 
 
 
 
 
a660631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae34a8d
3c4344e
a660631
 
 
 
3c4344e
a660631
 
 
 
 
ae34a8d
3c4344e
a660631
 
 
 
f521e88
a660631
 
 
 
f521e88
a660631
f521e88
 
a660631
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python

import gradio as gr

from settings import (
    DEFAULT_IMAGE_RESOLUTION,
    DEFAULT_NUM_IMAGES,
    MAX_IMAGE_RESOLUTION,
    MAX_NUM_IMAGES,
    MAX_SEED,
)
from utils import randomize_seed_fn

examples = [
    [
        "images/hed/hed_demo.jpeg",
        "Language trip to Laon",
    ],
]

def create_demo(process):
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                image = gr.Image()
                prompt = gr.Textbox(label="Prompt")
                run_button = gr.Button("Run")
                with gr.Accordion("Advanced options", open=False):
                    preprocessor_name = gr.Radio(
                        label="Preprocessor",
                        choices=[
                            "HED",
                            "PidiNet",
                            "HED safe",
                            "PidiNet safe",
                            "None",
                        ],
                        type="value",
                        value="HED",
                    )
                    num_samples = gr.Slider(
                        label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
                    )
                    image_resolution = gr.Slider(
                        label="Image resolution",
                        minimum=256,
                        maximum=MAX_IMAGE_RESOLUTION,
                        value=DEFAULT_IMAGE_RESOLUTION,
                        step=256,
                    )
                    preprocess_resolution = gr.Slider(
                        label="Preprocess resolution", minimum=128, maximum=512, value=512, step=1
                    )
                    num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
                    guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    a_prompt = gr.Textbox(label="Additional prompt", value="high-quality, extremely detailed, 4K")
                    n_prompt = gr.Textbox(
                        label="Negative prompt",
                        value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                    )
            with gr.Column():
                result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")

        gr.Examples(
            examples=examples,
            inputs=[
                image,
                prompt,
                guidance_scale,
                seed,
            ],
            outputs=result,
            fn=process,
        )

        inputs = [
            image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            image_resolution,
            preprocess_resolution,
            num_steps,
            guidance_scale,
            seed,
            preprocessor_name,
        ]
        prompt.submit(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=process,
            inputs=inputs,
            outputs=result,
            api_name=False,
        )
        run_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=process,
            inputs=inputs,
            outputs=result,
            api_name="softedge",
        )
    return demo


if __name__ == "__main__":
    from model import Model

    model = Model(task_name="softedge")
    demo = create_demo(model.process_softedge)
    demo.queue().launch()