|
import gradio as gr |
|
import spacy |
|
import pandas as pd |
|
from docx import Document |
|
from io import BytesIO |
|
import tempfile |
|
import os |
|
import multiprocessing as mp |
|
|
|
|
|
nlp = spacy.load('zh_core_web_trf') |
|
|
|
|
|
|
|
def extract_names_from_text(text): |
|
print(f'{len(text)}/n/n{text}') |
|
doc = nlp(text) |
|
|
|
persons = [ent.text for ent in doc.ents if ent.label_ == 'PERSON'] |
|
return persons |
|
|
|
|
|
def split_text(text, max_length=100000): |
|
result = [] |
|
current_chunk = [] |
|
current_length = 0 |
|
|
|
|
|
paragraphs = text.split('\n') |
|
|
|
for paragraph in paragraphs: |
|
paragraph_length = len(paragraph) + 1 |
|
if current_length + paragraph_length <= max_length: |
|
current_chunk.append(paragraph) |
|
current_length += paragraph_length |
|
else: |
|
|
|
result.append('\n'.join(current_chunk)) |
|
current_chunk = [paragraph] |
|
current_length = paragraph_length |
|
|
|
|
|
if current_chunk: |
|
result.append('\n'.join(current_chunk)) |
|
|
|
return result |
|
|
|
|
|
def extract_names_from_fragments(fragments): |
|
|
|
with mp.Pool(processes=4) as pool: |
|
results = pool.map(extract_names_from_text, fragments) |
|
return results |
|
|
|
|
|
def extract_names_from_docx(docx_file): |
|
|
|
document = Document(docx_file) |
|
full_text = [] |
|
for para in document.paragraphs: |
|
full_text.append(para.text) |
|
|
|
|
|
text = ' '.join(full_text) |
|
|
|
|
|
text_fragments = split_text(text) |
|
|
|
|
|
results = extract_names_from_fragments(text_fragments) |
|
|
|
|
|
all_persons = [] |
|
for persons in results: |
|
all_persons.extend(persons) |
|
|
|
|
|
all_persons = list(set(all_persons)) |
|
|
|
|
|
df = pd.DataFrame(all_persons, columns=['Nombres']) |
|
|
|
|
|
temp_dir = tempfile.mkdtemp() |
|
temp_file_path = os.path.join(temp_dir, "nombres_personas.xlsx") |
|
|
|
|
|
with pd.ExcelWriter(temp_file_path, engine='openpyxl') as writer: |
|
df.to_excel(writer, index=False) |
|
|
|
return temp_file_path |
|
|
|
|
|
iface = gr.Interface( |
|
fn=extract_names_from_docx, |
|
inputs=gr.File(file_types=[".docx"]), |
|
outputs=gr.File(), |
|
title="Extractor de Nombres", |
|
description="Sube un archivo .docx y extrae los nombres de las personas usando NLP con SpaCy. Descarga el resultado en un archivo Excel." |
|
) |
|
|
|
|
|
iface.launch() |