Spaces:
Build error
Build error
File size: 8,344 Bytes
4770145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import streamlit as st
import plotly.express as px
import pandas as pd
import numpy as np
import pickle as pkl
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
nlp = spacy.load('en_core_web_lg')
import re
import docx2txt
from spacy.matcher import PhraseMatcher
# from transformers import BertForSequenceClassification
# from transformers import BertTokenizer
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# tokenizer = AutoTokenizer.from_pretrained("liberatoratif/BERT-resume-job-recommender")
# model = AutoModelForSequenceClassification.from_pretrained("liberatoratif/BERT-resume-job-recommender")
matcher = PhraseMatcher(nlp.vocab)
import torch
st.set_page_config(
page_title="Resume Scanner",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded",
)
# output_dir = "model_save"
enc_dir = "target_encodings.pkl"
matcher_dir = "linkedin_skill.txt"
# @st.cache
def bert():
# model_loaded_temp = BertForSequenceClassification.from_pretrained(output_dir)
model_loaded_temp = AutoModelForSequenceClassification.from_pretrained("liberatoratif/BERT-resume-job-recommender")
return model_loaded_temp
# @st.cache
def bert_token():
# tokenizer_loaded_temp = BertTokenizer.from_pretrained(output_dir)
tokenizer_loaded_temp = AutoTokenizer.from_pretrained("liberatoratif/BERT-resume-job-recommender")
return tokenizer_loaded_temp
# @st.cache
def label_enc():
enc = pkl.load(open(enc_dir, 'rb'))
return enc
# @st.cache
def ph_match():
with open(matcher_dir, 'r', encoding='utf-8') as file:
text = file.read()
return text
label_encoder = label_enc()
model_loaded = bert()
tokenizer_loaded = bert_token()
txt = ph_match()
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 250px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 150px;
margin-left: -500px;
}
</style>
""",
unsafe_allow_html=True,
)
st.markdown("<h1 style='text-align: centre; color: cyan;'>RESUME/CV SCANNER</h1>",
unsafe_allow_html=True)
st.markdown("<h6 style='text-align: centre; color: white;'>Know which domain fit's your resume :)</h1>",
unsafe_allow_html=True)
stops = list(STOP_WORDS)
def extract_text_from_docx(docx_path):
txt = docx2txt.process(docx_path)
if txt:
return txt.replace('\t', ' ')
return None
def cleanResume(resumeText):
resumeText = ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)"," ",resumeText).split())
resumeText = re.sub(r'[^\x00-\x7F]+',r' ', resumeText)
resumeText = ''.join(resumeText.splitlines())
return resumeText
def complete_pack(x):
demo = nlp(x)
lst = [i.text.lower() for i in demo if i.text.lower() not in stops]
return lst
with st.sidebar:
global resume_text, upload
global resume_text_spacy, re_temp
upload = st.file_uploader("DRAG AND DROP YOUR RESUME NOW")
st.markdown("<h5 style='text-align: centre; color: red;'>Only .docx type files accepted</h1>",
unsafe_allow_html=True)
if upload:
try:
resume_text = extract_text_from_docx(upload)
resume_text = resume_text.replace('\n\n', ' ')
re_temp = cleanResume(resume_text)
resume_text_spacy = nlp(re_temp)
except Exception as e:
st.error('WRONG FILE FORMAT : Only .docx(WORD DOC) type of files are accepted')
scan = st.button('SCAN π')
if scan:
try:
emails = re.findall(r"[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+", resume_text)
phone = re.findall(r'[\+\(]?[1-9][0-9 .\-\(\)]{8,}[0-9]', resume_text)
links = re.findall(r"(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'\".,<>?«»ββββ]))", resume_text)
txt = txt.split('\n')
ev = [nlp.make_doc(i) for i in txt]
matcher.add("SKILLS", None, *ev)
get_skills = matcher(resume_text_spacy)
demo = []
for match_id, start, end in get_skills:
span = resume_text_spacy[start : end]
demo.append(span.text)
re_text = ' '.join(demo)
my_skills_re_text = re_text
my_skills_clean_re_text = cleanResume(my_skills_re_text)
skills = complete_pack(my_skills_clean_re_text)
skills = ' '.join(skills)
lst = []
lst.append(skills)
model_loaded.eval()
# Tokenize the input text
input_ids = tokenizer_loaded.encode(lst[0], add_special_tokens=True)
input_ids = torch.tensor(input_ids).unsqueeze(0) # Add batch dimension
# Move the input tensor to the same device as the model
# input_ids = input_ids.to(device)
# model_loaded = model_loaded.to(device)
# Perform the forward pass to get the model's predictions
with torch.no_grad():
result = model_loaded(input_ids, token_type_ids=None, attention_mask=None, return_dict=True)
logits = result.logits
# Move the logits to the CPU and convert to numpy array
logits = logits.detach().cpu().numpy()
# Get the predicted label
predicted_label = np.argmax(logits)
# Print the predicted label
# st.write("Predicted Label:", predicted_label)
probs = logits[0]
# print("text:", lst[0])
# print("predictions:", probs)
pred_idx = np.argmax(probs)
# kp = list(pred_idx)
d = {}
ind = 0
for i in probs:
d[label_encoder.inverse_transform([ind])[0]] = i
ind+=1
# st.write("Your skills are matching to : ", label_encoder.inverse_transform([pred_idx])[0])
domain = label_encoder.inverse_transform([pred_idx])[0]
data = pd.DataFrame({'Domains' : list(d.keys()), 'Probs' : list(d.values())})
# st.markdown(f"**Your skills are matching to:** <span style='color: cyan;'>{domain}</span>", unsafe_allow_html=True) #BF3EFF
st.markdown(f"<span style='color: #BF3EFF;'>**Your skills are matching to :**</span> <span style='color: #54FF9F;'>{domain}</span>", unsafe_allow_html=True)
datacpy = data.copy()
datacpy['Probs'] = datacpy['Probs']*10
datacpy.rename(columns={'Probs': 'Percentage Prediction of your Domain'}, inplace=True)
st.markdown("<h3 style='text-align: centre; color: blue;'>PERCENT OF YOUR DOMAIN MATCH</h3>",
unsafe_allow_html=True)
st.dataframe(datacpy.sort_values('Percentage Prediction of your Domain', ascending=False))
domains = px.bar(data, x = 'Domains', y = 'Probs',width=800, height=400)
st.plotly_chart(domains)
if len(list(set(emails))) > 0:
st.markdown("<h4 style='text-align: centre; color: blue;'>EMAIL βοΈ </h1>",
unsafe_allow_html=True)
st.success(list(set(emails)))
else:
st.markdown("<h4 style='text-align: centre; color: blue;'>EMAIL β </h1>",
unsafe_allow_html=True)
st.error('Email-Id is not present try including it in your Resume')
if len(list(set(phone))) > 0:
st.markdown("<h4 style='text-align: centre; color: blue;'>MOBILE NO βοΈ </h1>",
unsafe_allow_html=True)
st.success(list(set(phone)))
else:
st.markdown("<h4 style='text-align: centre; color: blue;'>MOBILE NO β </h1>",
unsafe_allow_html=True)
st.error('Mobile number is not present try including it in your Resume')
if len(list(set(links))) > 0:
st.markdown("<h4 style='text-align: centre; color: blue;'>LINKS βοΈ </h1>",
unsafe_allow_html=True)
st.success(list(set(links)))
else:
st.markdown("<h4 style='text-align: centre; color: blue;'>LINKS β</h1>",
unsafe_allow_html=True)
st.error("Link's are not present try including your Github or LinkedIn Profile in your Resume")
except Exception as e:
st.write(e)
st.error("π² Try uploading your file again")
|