chatbot_full / bm25_utils.py
letrunglinh's picture
Upload 15 files
fa01b79
raw
history blame
1.68 kB
import numpy as np
from tqdm.auto import tqdm
tqdm.pandas()
from gensim.corpora import Dictionary
from gensim.models import TfidfModel
from gensim.similarities import SparseMatrixSimilarity
from text_utils import preprocess
class BM25Gensim:
def __init__(self, checkpoint_path, entity_dict, title2idx):
self.dictionary = Dictionary.load(checkpoint_path + "/dict")
self.tfidf_model = SparseMatrixSimilarity.load(checkpoint_path + "/tfidf")
self.bm25_index = TfidfModel.load(checkpoint_path + "/bm25_index")
self.title2idx = title2idx
self.entity_dict = entity_dict
def get_topk_stage1(self, query, topk=100):
tokenized_query = query.split()
tfidf_query = self.tfidf_model[self.dictionary.doc2bow(tokenized_query)]
scores = self.bm25_index[tfidf_query]
top_n = np.argsort(scores)[::-1][:topk]
return top_n, scores[top_n]
def get_topk_stage2(self, x, raw_answer=None, topk=50):
x = str(x)
query = preprocess(x, max_length=128).lower().split()
tfidf_query = self.tfidf_model[self.dictionary.doc2bow(query)]
scores = self.bm25_index[tfidf_query]
top_n = list(np.argsort(scores)[::-1][:topk])
if raw_answer is not None:
raw_answer = raw_answer.strip()
if raw_answer in self.entity_dict:
title = self.entity_dict[raw_answer].replace("wiki/", "").replace("_", " ")
extra_id = self.title2idx.get(title, -1)
if extra_id != -1 and extra_id not in top_n:
top_n.append(extra_id)
scores = scores[top_n]
return np.array(top_n), np.array(scores)