import mediapy
import gradio as gr
from utils import load_image
from interpolator import Interpolator, interpolate_recursively
path = "./smoot.mp4"
interpolator = Interpolator()
def predict(image_a, image_b, preview):
image1 = load_image(image_a)
image2 = load_image(image_b)
input_frames = [image1, image2]
if preview:
fps = 3
frames = interpolator.preview_frames(input_frames)
else:
fps = 30
frames = list(interpolate_recursively(input_frames, interpolator))
mediapy.write_video(path, frames, fps=fps)
return path
footer = r"""
Demo for FILM model
"""
coffe = r"""
"""
with gr.Blocks(title="FILM") as app:
gr.HTML("Frame interpolation using the FILM model
")
gr.HTML("Frame interpolation is the task of synthesizing many in-between images from a given set of "
"images. The technique is often used for frame rate upsampling or creating slow-motion video "
"effects.
")
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column():
input_img_a = gr.Image(type="filepath", label="Input image A")
with gr.Column():
input_img_b = gr.Image(type="filepath", label="Input image B")
pre = gr.Checkbox(label="Preview", value=True, info="Run in preview mode video")
run_btn = gr.Button(variant="primary")
with gr.Column():
output_img = gr.Video(format="mp4", label="Interpolate video", autoplay=True)
gr.ClearButton(components=[input_img_a, input_img_b, output_img], variant="stop")
run_btn.click(predict, [input_img_a, input_img_b, pre], [output_img])
with gr.Row():
blobs_a = [[f"examples/image_a/{x:02d}.jpg"] for x in range(1, 2)]
examples_a = gr.Dataset(components=[input_img_a], samples=blobs_a)
examples_a.click(lambda x: x[0], [examples_a], [input_img_a])
with gr.Row():
blobs_b = [[f"examples/image_b/{x:02d}.jpg"] for x in range(1, 2)]
examples_b = gr.Dataset(components=[input_img_b], samples=blobs_b)
examples_b.click(lambda x: x[0], [examples_b], [input_img_b])
with gr.Row():
gr.HTML(footer)
with gr.Row():
gr.HTML(coffe)
app.launch(share=False, debug=True, show_error=True)
app.queue()