add options
Browse files- app.py +24 -12
- interpolator.py +20 -3
- requirements.txt +1 -0
app.py
CHANGED
@@ -8,19 +8,25 @@ path = "./smoot.mp4"
|
|
8 |
interpolator = Interpolator()
|
9 |
|
10 |
|
11 |
-
def predict(image_a, image_b):
|
12 |
image1 = load_image(image_a)
|
13 |
image2 = load_image(image_b)
|
14 |
input_frames = [image1, image2]
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
return path
|
18 |
|
19 |
|
20 |
footer = r"""
|
21 |
<center>
|
22 |
<b>
|
23 |
-
Demo for <a href='https://www.tensorflow.org/hub/tutorials/
|
24 |
</b>
|
25 |
</center>
|
26 |
"""
|
@@ -33,20 +39,26 @@ coffee&emoji=&slug=leonelhs&button_colour=FFDD00&font_colour=000000&font_family=
|
|
33 |
</center>
|
34 |
"""
|
35 |
|
36 |
-
with gr.Blocks(title="
|
37 |
-
gr.HTML("<center><h1>
|
38 |
-
gr.HTML("<center><h3>
|
39 |
-
"
|
|
|
40 |
with gr.Row(equal_height=False):
|
41 |
with gr.Column():
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
run_btn = gr.Button(variant="primary")
|
|
|
45 |
with gr.Column():
|
46 |
-
output_img = gr.Video(format="mp4", label="Interpolate video")
|
47 |
gr.ClearButton(components=[input_img_a, input_img_b, output_img], variant="stop")
|
48 |
|
49 |
-
run_btn.click(predict, [input_img_a, input_img_b], [output_img])
|
50 |
|
51 |
with gr.Row():
|
52 |
blobs_a = [[f"examples/image_a/{x:02d}.jpg"] for x in range(1, 2)]
|
|
|
8 |
interpolator = Interpolator()
|
9 |
|
10 |
|
11 |
+
def predict(image_a, image_b, preview):
|
12 |
image1 = load_image(image_a)
|
13 |
image2 = load_image(image_b)
|
14 |
input_frames = [image1, image2]
|
15 |
+
if preview:
|
16 |
+
fps = 3
|
17 |
+
frames = interpolator.preview_frames(input_frames)
|
18 |
+
else:
|
19 |
+
fps = 30
|
20 |
+
frames = list(interpolate_recursively(input_frames, interpolator))
|
21 |
+
|
22 |
+
mediapy.write_video(path, frames, fps=fps)
|
23 |
return path
|
24 |
|
25 |
|
26 |
footer = r"""
|
27 |
<center>
|
28 |
<b>
|
29 |
+
Demo for <a href='https://www.tensorflow.org/hub/tutorials/tf_hub_film_example'>FILM model</a>
|
30 |
</b>
|
31 |
</center>
|
32 |
"""
|
|
|
39 |
</center>
|
40 |
"""
|
41 |
|
42 |
+
with gr.Blocks(title="FILM") as app:
|
43 |
+
gr.HTML("<center><h1>Frame interpolation using the FILM model</h1></center>")
|
44 |
+
gr.HTML("<center><h3>Frame interpolation is the task of synthesizing many in-between images from a given set of "
|
45 |
+
"images. The technique is often used for frame rate upsampling or creating slow-motion video "
|
46 |
+
"effects.</h3></center>")
|
47 |
with gr.Row(equal_height=False):
|
48 |
with gr.Column():
|
49 |
+
with gr.Row(equal_height=True):
|
50 |
+
with gr.Column():
|
51 |
+
input_img_a = gr.Image(type="filepath", label="Input image A")
|
52 |
+
with gr.Column():
|
53 |
+
input_img_b = gr.Image(type="filepath", label="Input image B")
|
54 |
+
pre = gr.Checkbox(label="Preview", value=True, info="Run in preview mode video")
|
55 |
run_btn = gr.Button(variant="primary")
|
56 |
+
|
57 |
with gr.Column():
|
58 |
+
output_img = gr.Video(format="mp4", label="Interpolate video", autoplay=True)
|
59 |
gr.ClearButton(components=[input_img_a, input_img_b, output_img], variant="stop")
|
60 |
|
61 |
+
run_btn.click(predict, [input_img_a, input_img_b, pre], [output_img])
|
62 |
|
63 |
with gr.Row():
|
64 |
blobs_a = [[f"examples/image_a/{x:02d}.jpg"] for x in range(1, 2)]
|
interpolator.py
CHANGED
@@ -1,7 +1,8 @@
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import tensorflow as tf
|
3 |
-
|
4 |
-
from typing import Generator, List, Iterable
|
5 |
|
6 |
"""A wrapper class for running a frame interpolation based on the FILM model on TFHub
|
7 |
|
@@ -12,6 +13,8 @@ Usage:
|
|
12 |
(B,H,W,C) layout, batch_dt is the sub-frame time in range [0..1], (B,) layout.
|
13 |
"""
|
14 |
|
|
|
|
|
15 |
|
16 |
def _pad_to_align(x, align):
|
17 |
"""Pads image batch x so width and height divide by align.
|
@@ -63,7 +66,9 @@ class Interpolator:
|
|
63 |
inference.'
|
64 |
"""
|
65 |
self.times_to_interpolate = times_to_interpolate
|
66 |
-
|
|
|
|
|
67 |
self._align = align
|
68 |
|
69 |
def __call__(self, x0: np.ndarray, x1: np.ndarray,
|
@@ -92,6 +97,18 @@ class Interpolator:
|
|
92 |
image = tf.image.crop_to_bounding_box(image, **bbox_to_crop)
|
93 |
return image.numpy()
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
def _recursive_generator(
|
97 |
frame1: np.ndarray, frame2: np.ndarray, num_recursions: int,
|
|
|
1 |
+
from typing import Generator, List, Iterable
|
2 |
+
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
+
from huggingface_hub import snapshot_download
|
|
|
6 |
|
7 |
"""A wrapper class for running a frame interpolation based on the FILM model on TFHub
|
8 |
|
|
|
13 |
(B,H,W,C) layout, batch_dt is the sub-frame time in range [0..1], (B,) layout.
|
14 |
"""
|
15 |
|
16 |
+
FILM_REPO_ID = "leonelhs/film"
|
17 |
+
|
18 |
|
19 |
def _pad_to_align(x, align):
|
20 |
"""Pads image batch x so width and height divide by align.
|
|
|
66 |
inference.'
|
67 |
"""
|
68 |
self.times_to_interpolate = times_to_interpolate
|
69 |
+
model_path = snapshot_download(FILM_REPO_ID)
|
70 |
+
self._model = tf.saved_model.load(model_path)
|
71 |
+
# self._model = hub.load("https://tfhub.dev/google/film/1")
|
72 |
self._align = align
|
73 |
|
74 |
def __call__(self, x0: np.ndarray, x1: np.ndarray,
|
|
|
97 |
image = tf.image.crop_to_bounding_box(image, **bbox_to_crop)
|
98 |
return image.numpy()
|
99 |
|
100 |
+
def preview_frames(self, frames: List[np.ndarray]):
|
101 |
+
|
102 |
+
time = np.array([0.5], dtype=np.float32)
|
103 |
+
|
104 |
+
media_input = {
|
105 |
+
'time': np.expand_dims(time, axis=0), # adding the batch dimension to the time
|
106 |
+
'x0': np.expand_dims(frames[0], axis=0), # adding the batch dimension to the image
|
107 |
+
'x1': np.expand_dims(frames[1], axis=0) # adding the batch dimension to the image
|
108 |
+
}
|
109 |
+
mid = self._model(media_input)
|
110 |
+
return [frames[0], mid['image'][0].numpy(), frames[1]]
|
111 |
+
|
112 |
|
113 |
def _recursive_generator(
|
114 |
frame1: np.ndarray, frame2: np.ndarray, num_recursions: int,
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
tensorflow>=2.15.0
|
2 |
tensorflow-hub>=0.15.0
|
3 |
requests>=2.31.0
|
|
|
1 |
+
gradio
|
2 |
tensorflow>=2.15.0
|
3 |
tensorflow-hub>=0.15.0
|
4 |
requests>=2.31.0
|