from glob import glob import gradio as gr from gradio_client import Client from utils import make_flatten_background REPO_ID = "leonelhs/faceshine" clients = { "GFPGAN": "leonelhs/GFPGAN", "ZeroScratches": "leonelhs/ZeroScratches", "Deoldify": "leonelhs/deoldify", "EnhanceLight": "leonelhs/Zero-DCE", "ZeroBackground": "leonelhs/rembg", } def load_client(space): try: return Client(space) except ValueError as err: print(err) logger.value.append(f"Space: {space}, log: {err}") pass def gfpgan_face(image, version, scale): return clients["GFPGAN"].predict(image, version, scale, fn_index=0)[0] def zero_scratches(image): return clients["ZeroScratches"].predict(image, api_name="/predict") def colorize_photo(image): return clients["Deoldify"].predict(image, api_name="/predict") def enhance_light(image): return clients["EnhanceLight"].predict(image, api_name="/predict") def zero_background(image, new_bgr=None): # Fixme: cant find predict function by name # return clients["ZeroBackground"].predict(image, new_bgr, fn_index=0)[1] # return clients["ZeroBackground"].predict(image, fn_index=0) img, mask = clients["ZeroBackground"].predict(image, "U2NET Human Seg", False, fn_index=9) return make_flatten_background(img, mask) def parse_face(image): return clients["FaceParser"].predict(image, api_name="/predict") def mirror(x): return x def active_first(): return gr.Tabs.update(selected=0) def clear(): return None, None footer = r"""

This App is running on a CPU, help us to upgrade a GPU or just give us a Github ⭐



leonelhs@gmail.com
""" with gr.Blocks(title="Face Shine") as app: logger = gr.State(value=[]) for client, endpoint in clients.items(): clients[client] = load_client(endpoint) with gr.Row(): gr.HTML("

Face Shine

") with gr.Tabs() as tabs: with gr.TabItem("Photo restorer", id=0): with gr.Row(equal_height=False): with gr.Column(scale=1): btn_eraser = gr.Button(value="Erase scratches") btn_color = gr.Button(value="Colorize photo") btn_hires = gr.Button(value="Enhance face") btn_light = gr.Button(value="Enhance light") btn_clear = gr.Button(value="Flatten background") with gr.Column(scale=2): with gr.Row(): img_input = gr.Image(label="Input", type="filepath") with gr.Row(): btn_reset = gr.Button(value="Reset", variant="stop") btn_swap = gr.Button(value="Ok", variant="primary") with gr.Column(scale=2): with gr.Row(): img_output = gr.Image(label="Result", type="filepath", interactive=False) with gr.TabItem("Examples", id=1): gr.Examples(examples=glob("lowres/*"), inputs=[img_input], label="Low resolution") gr.Examples(examples=glob("gray/*"), inputs=[img_input], label="Gray scale") gr.Examples(examples=glob("scratch/*"), inputs=[img_input], label="Scratched") gr.Button(value="Ok", variant="primary").click(active_first, None, tabs) with gr.TabItem("Settings", id=2): with gr.Accordion("Image restoration settings", open=False): enhancer = gr.Dropdown(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], label='GFPGAN face restoration algorithm', type="value", value='RestoreFormer', info="version") rescale = gr.Dropdown(["1", "2", "3", "4"], type="value", value="2", label="Rescaling factor") with gr.Accordion("Logs info", open=False): text_logger = gr.Textbox(label="login", lines=5, show_label=False) gr.Button("Save settings") btn_hires.click(gfpgan_face, inputs=[img_input, enhancer, rescale], outputs=[img_output]) btn_eraser.click(zero_scratches, inputs=[img_input], outputs=[img_output]) btn_color.click(colorize_photo, inputs=[img_input], outputs=[img_output]) btn_light.click(enhance_light, inputs=[img_input], outputs=[img_output]) btn_clear.click(zero_background, inputs=[img_input], outputs=[img_output]) btn_swap.click(mirror, inputs=[img_output], outputs=[img_input]) btn_reset.click(clear, outputs=[img_input, img_output]) with gr.Row(): gr.HTML(footer) app.queue() app.launch(share=False, debug=True, show_error=True)