leomaurodesenv commited on
Commit
cc5e36a
β€’
1 Parent(s): e4fce2c

feat(app): Update the question answering model

Browse files
Files changed (2) hide show
  1. README.md +5 -2
  2. app.py +2 -2
README.md CHANGED
@@ -17,7 +17,7 @@ tags:
17
  - extractive-qa
18
  short_description: "QASports the first large sports-themed QA dataset"
19
  models:
20
- - laurafcamargos/distilbert-qasports-basket-small
21
  datasets:
22
  - PedroCJardim/QASports
23
  ---
@@ -26,7 +26,10 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
26
 
27
  # Website
28
 
29
- This website presents a collection of documents from the dataset named "QASports", the first large sports question answering dataset for open questions. QASports contains real data of players, teams and matches from the sports soccer, basketball and American football. It counts over 1.5 million questions and answers about 54k preprocessed, cleaned and organized documents from Wikipedia-like sources.
 
 
 
30
 
31
  > **Note**. As first version, we are only focusing in Basketball data.
32
 
 
17
  - extractive-qa
18
  short_description: "QASports the first large sports-themed QA dataset"
19
  models:
20
+ - deepset/roberta-base-squad2
21
  datasets:
22
  - PedroCJardim/QASports
23
  ---
 
26
 
27
  # Website
28
 
29
+ This website presents a collection of documents from the dataset named "QASports", the first large sports question answering dataset for open questions. QASports contains real data of players, teams and matches from the sports soccer, basketball and American football.
30
+
31
+ - πŸ’» Website: https://huggingface.co/spaces/leomaurodesenv/qasports-website
32
+ - πŸ”§ Scripts: https://github.com/leomaurodesenv/qasports-dataset-website
33
 
34
  > **Note**. As first version, we are only focusing in Basketball data.
35
 
app.py CHANGED
@@ -59,7 +59,7 @@ def get_question_pipeline(_doc_store):
59
  st.caption(f"Building the Question Answering pipeline")
60
  # Create the retriever and reader
61
  retriever = InMemoryBM25Retriever(document_store=_doc_store)
62
- reader = ExtractiveReader(model="laurafcamargos/distilbert-qasports-basket-small")
63
  reader.warm_up()
64
  # Create the pipeline
65
  pipe = Pipeline()
@@ -112,7 +112,7 @@ st.caption(
112
  )
113
 
114
  if user_query := st.text_input(
115
- label="What do you want to know about Basketball?",
116
  placeholder="How many field goals did Kobe Bryant score?",
117
  ):
118
  # Get the answers
 
59
  st.caption(f"Building the Question Answering pipeline")
60
  # Create the retriever and reader
61
  retriever = InMemoryBM25Retriever(document_store=_doc_store)
62
+ reader = ExtractiveReader(model="deepset/roberta-base-squad2")
63
  reader.warm_up()
64
  # Create the pipeline
65
  pipe = Pipeline()
 
112
  )
113
 
114
  if user_query := st.text_input(
115
+ label="Ask a question about Basketball! πŸ€",
116
  placeholder="How many field goals did Kobe Bryant score?",
117
  ):
118
  # Get the answers