import gradio as gr import pandas as pd from datetime import datetime import pytz # This library is used for timezone conversions def display_csv(file, supplier, order_number): df = pd.read_csv(file.name) # Define supplier-specific filters vendor_filters = { "Supplier 1": lambda df: df[~df['Vendor'].isin(["Seed", "EverColor", "Candy Magic", "OLENS", "Fairy", "Shobido", "Geo Medical", "Ann365", "Lenstown", "LensVery"])], "Supplier 2": lambda df: df[df['Vendor'].isin(["Candy Magic", "OLENS", "Fairy", "Shobido"])], "Supplier 3": lambda df: df[df['Vendor'].isin(["Seed", "EverColor"])], "Supplier 4": lambda df: df[df['Vendor'] == "Geo Medical", "Lenstown"], "Supplier 5": lambda df: df[df['Vendor'] == "Ann365", "LensVery"] } # Apply supplier filter if selected if supplier and supplier in vendor_filters: df = vendor_filters[supplier](df) # Filter based on order number if order_number: df = df[df['Order Number'] >= int(order_number)] # Specify columns for output columns_to_include = [ 'Order Number', 'Quantity', 'Product Title', 'Product Option Name', 'Product Option Value', 'Order Line item Properties 2 Name', 'Order Line item Properties 2 Value', 'Order Line item Properties 3 Name', 'Order Line item Properties 3 Value' ] download_df = df[columns_to_include] # Get the current date in Hong Kong Time hk_timezone = pytz.timezone("Asia/Hong_Kong") current_date_hk = datetime.now(hk_timezone).strftime("%y%m%d") # Set output file name based on the selected supplier if supplier == "Supplier 1": output_file = f"Leading Bridge Order {current_date_hk}.xlsx" elif supplier == "Supplier 2": output_file = f"Leading Bridge Order {current_date_hk}-Ammu.xlsx" else: output_file = "filtered_output.xlsx" # Default file name for other cases # Save filtered DataFrame as Excel file download_df.to_excel(output_file, index=False) return df, output_file # Define the main block for the interface with gr.Blocks() as demo: with gr.Row(): file_input = gr.File(label="Upload CSV") supplier_input = gr.Dropdown(choices=["", "Supplier 1", "Supplier 2", "Supplier 3", "Supplier 4", "Supplier 5"], label="Select Supplier") order_number_input = gr.Number(label="Minimum Order Number", precision=0) load_button = gr.Button("Load Data") with gr.Row(): output_df = gr.DataFrame() output_file = gr.File(label="Download Filtered CSV") # Bind the function to inputs and outputs using the button load_button.click(fn=display_csv, inputs=[file_input, supplier_input, order_number_input], outputs=[output_df, output_file]) # Run the interface demo.launch()