Spaces:
Running
Running
File size: 2,104 Bytes
34dad03 9880a63 34dad03 9d3fa20 fa2dcad 9d3fa20 fa2dcad 9d3fa20 9880a63 fa2dcad 9d3fa20 9880a63 9d3fa20 34dad03 9d3fa20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import pandas as pd
def display_csv(file, supplier):
df = pd.read_csv(file.name)
# Define supplier-specific filters
vendor_filters = {
"Supplier 1": lambda df: df[~df['Vendor'].isin(["Seed", "EverColor", "Candy Magic", "OLENS", "Fairy", "Shobido", "Geo Medical", "Ann365"])],
"Supplier 2": lambda df: df[df['Vendor'].isin(["Candy Magic", "OLENS", "Fairy", "Shobido"])],
"Supplier 3": lambda df: df[df['Vendor'].isin(["Seed", "EverColor"])],
"Supplier 4": lambda df: df[df['Vendor'] == "Geo Medical"],
"Supplier 5": lambda df: df[df['Vendor'] == "Ann365"]
}
# Apply filter based on selected supplier
if supplier and supplier in vendor_filters:
df = vendor_filters[supplier](df)
# Specify columns for output
columns_to_include = [
'Order Number', 'Quantity', 'Product Title', 'Product Option Name',
'Product Option Value', 'Order Line item Properties 2 Name',
'Order Line item Properties 2 Value', 'Order Line item Properties 3 Name',
'Order Line item Properties 3 Value'
]
download_df = df[columns_to_include]
# Save filtered DataFrame as CSV file
output_file = "filtered_output.csv"
download_df.to_csv(output_file, index=False)
return df, output_file
# Define the main block for the interface
with gr.Blocks() as demo:
with gr.Tab("CSV Viewer"):
with gr.Row():
file_input = gr.File(label="Upload CSV")
supplier_input = gr.Dropdown(choices=["", "Supplier 1", "Supplier 2", "Supplier 3", "Supplier 4", "Supplier 5"], label="Select Supplier")
load_button = gr.Button("Load Data")
with gr.Row():
output_df = gr.DataFrame()
output_file = gr.File(label="Download Filtered CSV")
# Bind the function to inputs and outputs using the button
load_button.click(fn=display_csv, inputs=[file_input, supplier_input], outputs=[output_df, output_file])
# You can add more tabs here with different functions
# Run the interface
demo.launch() |