final_project / app.py
leadingbridge's picture
Update app.py
d6539e5
raw
history blame
925 Bytes
from transformers import BertTokenizerFast,TFBertForSequenceClassification,TextClassificationPipeline
import numpy as np
import tensorflow as tf
import gradio as gr
model_path = "leadingbridge/sentiment-analysis"
tokenizer = BertTokenizerFast.from_pretrained(model_path)
model = TFBertForSequenceClassification.from_pretrained(model_path, id2label={0: 'negative', 1: 'positive'} )
def sentiment_analysis(text):
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
result = pipe(text)
return result
with gr.Blocks() as demo:
gr.Markdown("Choose the Chinese NLP model you want to use.")
with gr.Tab("Sentiment Analysis"):
text_button = gr.Button("proceed")
text_button.click(fn=sentiment_analysis,inputs=gr.Textbox(placeholder="Enter a positive or negative sentence here..."),
outputs=gr.Textbox(label="Sentiment Analysis"))
demo.launch(share=True)