Spaces:
Sleeping
Sleeping
File size: 3,645 Bytes
e05abd0 672fa81 edadbff ffacbee edadbff e05abd0 edadbff 8310927 edadbff 0c6360c edadbff 8fccea5 edadbff e05abd0 c14ef23 8151f8b c14ef23 d88c117 c14ef23 8151f8b 3f5673b 8151f8b c14ef23 edadbff e05abd0 5e49ced edadbff 6794548 8151f8b 75dfd0c 8151f8b be2d5d0 8fccea5 c14ef23 a6eaf64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
from transformers import BertTokenizerFast,TFBertForSequenceClassification,TextClassificationPipeline
import numpy as np
import tensorflow as tf
import gradio as gr
import openai
import os
# Sentiment Analysis Pre-Trained Model
model_path = "leadingbridge/sentiment-analysis"
tokenizer = BertTokenizerFast.from_pretrained(model_path)
model = TFBertForSequenceClassification.from_pretrained(model_path, id2label={0: 'negative', 1: 'positive'} )
def sentiment_analysis(text):
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
result = pipe(text)
return result
# Open AI Chatbot Model
openai.api_key = "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"
start_sequence = "\nAI:"
restart_sequence = "\nHuman: "
prompt = "You can discuss any topic with the Chinese Chatbot assistant by typing Chinese in here"
def openai_create(prompt):
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.9,
max_tokens=1024,
top_p=1,
frequency_penalty=0,
presence_penalty=0.6,
stop=[" Human:", " AI:"]
)
return response.choices[0].text
def chatgpt_clone(input, history):
history = history or []
s = list(sum(history, ()))
s.append(input)
inp = ' '.join(s)
output = openai_create(inp)
history.append((input, output))
return history, history
# Open AI Chinese Translation Model
def translate_to_chinese(text_to_translate):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Translate this short English sentence into Chinese:\n\n{text_to_translate}\n\n1.",
temperature=0.3,
max_tokens=1024,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
return response.choices[0].text.strip()
# Open AI English Translation Model
def translate_to_english(text_to_translate):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Translate this short Chinese sentence into English:\n\n{text_to_translate}\n\n1.",
temperature=0.3,
max_tokens=1024,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
return response.choices[0].text.strip()
# Gradio Output Model
with gr.Blocks() as demo:
gr.Markdown("Choose the Chinese NLP model you want to use from the tabs")
with gr.Tab("OpenAI Chatbot"):
chatbot = gr.Chatbot()
message = gr.Textbox(placeholder=prompt)
state = gr.State()
submit = gr.Button("SEND")
submit.click(chatgpt_clone, inputs=[message, state], outputs=[chatbot, state])
with gr.Tab("Sentiment Analysis"):
inputs = gr.Textbox(placeholder="Enter a Chinese positive or negative sentence here")
outputs = gr.Textbox(label="Sentiment Analysis")
proceed_button = gr.Button("proceed")
proceed_button.click(fn=sentiment_analysis, inputs=inputs, outputs=outputs)
with gr.Tab("Translation to Chinese"):
inputs = gr.Textbox(placeholder="Enter a short English sentence to translate to Chinese here.")
outputs = gr.Textbox(label="Translation Result")
proceed_button = gr.Button("Translate")
proceed_button.click(fn=translate_to_chinese, inputs=inputs, outputs=outputs)
with gr.Tab("Translation to English"):
inputs = gr.Textbox(placeholder="Enter a short Chinese sentence to translate to English here.")
outputs = gr.Textbox(label="Translation Result")
proceed_button = gr.Button("Translate")
proceed_button.click(fn=translate_to_english, inputs=inputs, outputs=outputs)
demo.launch(inline=False) |