Spaces:
Runtime error
Runtime error
File size: 4,949 Bytes
5416a13 9f4b472 9ba02a8 5416a13 9f4b472 5416a13 9ac3ff2 5416a13 9f4b472 5416a13 9f4b472 5416a13 9ac3ff2 98a92b9 9ac3ff2 5d39493 9ba02a8 5d39493 9f4b472 5416a13 741ba88 5416a13 5d39493 5416a13 5d39493 5416a13 741ba88 5416a13 9ba02a8 741ba88 5416a13 5d39493 9f4b472 5d39493 9f4b472 5d39493 9f4b472 5d39493 5416a13 b1b1939 5416a13 5d39493 5416a13 1e3e225 5416a13 9ac3ff2 5b7da8b 98a92b9 5416a13 9ac3ff2 5416a13 2f1dd2d 5416a13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from PIL import Image
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
torch.backends.cuda.matmul.allow_tf32 = True
import gc
controlnet = ControlNetModel.from_pretrained("ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()
def infer(
prompt,
negative_prompt,
conditioning_image,
num_inference_steps=30,
size=768,
guidance_scale=7.0,
seed=1234,
):
conditioning_image_raw = Image.fromarray(conditioning_image)
conditioning_image = conditioning_image_raw.convert('L')
g_cpu = torch.Generator()
if seed == -1:
generator = g_cpu.manual_seed(g_cpu.seed())
else:
generator = g_cpu.manual_seed(seed)
output_image = pipe(
prompt,
conditioning_image,
height=size,
width=size,
num_inference_steps=num_inference_steps,
generator=generator,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=1.0,
).images[0]
del conditioning_image, conditioning_image_raw
gc.collect()
return output_image
with gr.Blocks() as demo:
gr.Markdown(
"""
# ControlNet on Brightness
This is a demo on ControlNet based on brightness.
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
)
conditioning_image = gr.Image(
label="Conditioning Image",
)
with gr.Accordion('Advanced options', open=False):
with gr.Row():
num_inference_steps = gr.Slider(
10, 40, 20,
step=1,
label="Steps",
)
size = gr.Slider(
256, 768, 512,
step=128,
label="Size",
)
with gr.Row():
guidance_scale = gr.Slider(
label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=7.0,
step=0.1
)
seed = gr.Slider(
label='Seed',
value=-1,
minimum=-1,
maximum=2147483647,
step=1,
# randomize=True
)
submit_btn = gr.Button(
value="Submit",
variant="primary"
)
with gr.Column(min_width=300):
output = gr.Image(
label="Result",
)
submit_btn.click(
fn=infer,
inputs=[
prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
],
outputs=output
)
gr.Examples(
examples=[
["a village in the mountains", "monochrome", "./conditioning_images/conditioning_image_1.jpg"],
["three people walking in an alleyway with hats and pants", "monochrome", "./conditioning_images/conditioning_image_2.jpg"],
["an anime character, natural skin", "monochrome, blue skin, grayscale", "./conditioning_images/conditioning_image_3.jpg"],
["a man in a black suit", "monochrome", "./conditioning_images/conditioning_image_4.jpg"],
["the forbidden city in beijing at sunset with a reflection in the water", "monochrome", "./conditioning_images/conditioning_image_5.jpg"],
["a man in a white shirt holding his hand out in front of", "monochrome", "./conditioning_images/conditioning_image_6.jpg"],
],
inputs=[
prompt, negative_prompt, conditioning_image
],
outputs=output,
fn=infer,
cache_examples=True,
)
gr.Markdown(
"""
* [Dataset](https://huggingface.co/datasets/ioclab/grayscale_image_aesthetic_3M)
* [Diffusers model](https://huggingface.co/ioclab/control_v1p_sd15_brightness), [Web UI model](https://huggingface.co/ioclab/ioc-controlnet)
* [Training Report](https://api.wandb.ai/links/ciaochaos/oot5cui2), [Doc(Chinese)](https://aigc.ioclab.com/sd-showcase/brightness-controlnet.html)
""")
demo.launch() |