Spaces:
Paused
Paused
import gradio as gr | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
import pandas as pd | |
import torch | |
from torch.utils.data import Dataset, random_split | |
from transformers import GPT2Tokenizer, TrainingArguments, Trainer, GPT2LMHeadModel | |
pretrained_name = "kobkrit/openthaigpt-gpt2-instructgpt-poc-0.0.2" | |
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_name, bos_token='<|startoftext|>',unk_token='<|unk|>', eos_token='<|endoftext|>', pad_token='<|pad|>') | |
model = GPT2LMHeadModel.from_pretrained(pretrained_name).cuda() | |
model.resize_token_embeddings(len(tokenizer)) | |
def gen(input): | |
generated = tokenizer("<|startoftext|>"+input, return_tensors="pt").input_ids.cuda() | |
output = model.generate(generated, top_k=50, num_beams=5, no_repeat_ngram_size=2, | |
early_stopping=True, max_length=300, top_p=0.95, temperature=1.9) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |
demo = gr.Interface(fn=gen, inputs=gr.Textbox(lines=3, label="Input Text", value="Q: อยากลดความอ้วน ทำอย่างไร\n\nA:"), outputs="text") | |
demo.launch() |