File size: 4,265 Bytes
07877c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
from concurrent.futures import ThreadPoolExecutor
import warnings

import numpy as np
import torch
from tqdm import tqdm

import utils
from common.log import logger
from common.stdout_wrapper import SAFE_STDOUT
from config import config

warnings.filterwarnings("ignore", category=UserWarning)
from pyannote.audio import Inference, Model

model = Model.from_pretrained("pyannote/wespeaker-voxceleb-resnet34-LM")
inference = Inference(model, window="whole")
device = torch.device(config.style_gen_config.device)
inference.to(device)


class NaNValueError(ValueError):
    """カスタム例外クラス。NaN値が見つかった場合に使用されます。"""

    pass


# 推論時にインポートするために短いが関数を書く
def get_style_vector(wav_path):
    return inference(wav_path)


def save_style_vector(wav_path):
    try:
        style_vec = get_style_vector(wav_path)
    except Exception as e:
        print("\n")
        logger.error(f"Error occurred with file: {wav_path}, Details:\n{e}\n")
        raise
    # 値にNaNが含まれていると悪影響なのでチェックする
    if np.isnan(style_vec).any():
        print("\n")
        logger.warning(f"NaN value found in style vector: {wav_path}")
        raise NaNValueError(f"NaN value found in style vector: {wav_path}")
    np.save(f"{wav_path}.npy", style_vec)  # `test.wav` -> `test.wav.npy`


def process_line(line):
    wavname = line.split("|")[0]
    try:
        save_style_vector(wavname)
        return line, None
    except NaNValueError:
        return line, "nan_error"


def save_average_style_vector(style_vectors, filename="style_vectors.npy"):
    average_vector = np.mean(style_vectors, axis=0)
    np.save(filename, average_vector)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-c", "--config", type=str, default=config.style_gen_config.config_path
    )
    parser.add_argument(
        "--num_processes", type=int, default=config.style_gen_config.num_processes
    )
    args, _ = parser.parse_known_args()
    config_path = args.config
    num_processes = args.num_processes

    hps = utils.get_hparams_from_file(config_path)

    device = config.style_gen_config.device

    training_lines = []
    with open(hps.data.training_files, encoding="utf-8") as f:
        training_lines.extend(f.readlines())
    with ThreadPoolExecutor(max_workers=num_processes) as executor:
        training_results = list(
            tqdm(
                executor.map(process_line, training_lines),
                total=len(training_lines),
                file=SAFE_STDOUT,
            )
        )
    ok_training_lines = [line for line, error in training_results if error is None]
    nan_training_lines = [
        line for line, error in training_results if error == "nan_error"
    ]
    if nan_training_lines:
        nan_files = [line.split("|")[0] for line in nan_training_lines]
        logger.warning(
            f"Found NaN value in {len(nan_training_lines)} files: {nan_files}, so they will be deleted from training data."
        )

    val_lines = []
    with open(hps.data.validation_files, encoding="utf-8") as f:
        val_lines.extend(f.readlines())

    with ThreadPoolExecutor(max_workers=num_processes) as executor:
        val_results = list(
            tqdm(
                executor.map(process_line, val_lines),
                total=len(val_lines),
                file=SAFE_STDOUT,
            )
        )
    ok_val_lines = [line for line, error in val_results if error is None]
    nan_val_lines = [line for line, error in val_results if error == "nan_error"]
    if nan_val_lines:
        nan_files = [line.split("|")[0] for line in nan_val_lines]
        logger.warning(
            f"Found NaN value in {len(nan_val_lines)} files: {nan_files}, so they will be deleted from validation data."
        )

    with open(hps.data.training_files, "w", encoding="utf-8") as f:
        f.writelines(ok_training_lines)

    with open(hps.data.validation_files, "w", encoding="utf-8") as f:
        f.writelines(ok_val_lines)

    ok_num = len(ok_training_lines) + len(ok_val_lines)

    logger.info(f"Finished generating style vectors! total: {ok_num} npy files.")