Spaces:
Running
Running
import torch | |
import torchaudio | |
from transformers import AutoModel | |
from common.log import logger | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
rl = rl.float().detach() | |
gl = gl.float() | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss * 2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
dr = dr.float() | |
dg = dg.float() | |
r_loss = torch.mean((1 - dr) ** 2) | |
g_loss = torch.mean(dg**2) | |
loss += r_loss + g_loss | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
dg = dg.float() | |
l = torch.mean((1 - dg) ** 2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
""" | |
z_p, logs_q: [b, h, t_t] | |
m_p, logs_p: [b, h, t_t] | |
""" | |
z_p = z_p.float() | |
logs_q = logs_q.float() | |
m_p = m_p.float() | |
logs_p = logs_p.float() | |
z_mask = z_mask.float() | |
kl = logs_p - logs_q - 0.5 | |
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) | |
kl = torch.sum(kl * z_mask) | |
l = kl / torch.sum(z_mask) | |
return l | |
class WavLMLoss(torch.nn.Module): | |
def __init__(self, model, wd, model_sr, slm_sr=16000): | |
super(WavLMLoss, self).__init__() | |
self.wavlm = AutoModel.from_pretrained(model) | |
self.wd = wd | |
self.resample = torchaudio.transforms.Resample(model_sr, slm_sr) | |
self.wavlm.eval() | |
for param in self.wavlm.parameters(): | |
param.requires_grad = False | |
def forward(self, wav, y_rec): | |
with torch.no_grad(): | |
wav_16 = self.resample(wav) | |
wav_embeddings = self.wavlm( | |
input_values=wav_16, output_hidden_states=True | |
).hidden_states | |
y_rec_16 = self.resample(y_rec) | |
y_rec_embeddings = self.wavlm( | |
input_values=y_rec_16, output_hidden_states=True | |
).hidden_states | |
floss = 0 | |
for er, eg in zip(wav_embeddings, y_rec_embeddings): | |
floss += torch.mean(torch.abs(er - eg)) | |
return floss.mean() | |
def generator(self, y_rec): | |
y_rec_16 = self.resample(y_rec) | |
y_rec_embeddings = self.wavlm( | |
input_values=y_rec_16, output_hidden_states=True | |
).hidden_states | |
y_rec_embeddings = ( | |
torch.stack(y_rec_embeddings, dim=1) | |
.transpose(-1, -2) | |
.flatten(start_dim=1, end_dim=2) | |
) | |
y_df_hat_g = self.wd(y_rec_embeddings) | |
loss_gen = torch.mean((1 - y_df_hat_g) ** 2) | |
return loss_gen | |
def discriminator(self, wav, y_rec): | |
with torch.no_grad(): | |
wav_16 = self.resample(wav) | |
wav_embeddings = self.wavlm( | |
input_values=wav_16, output_hidden_states=True | |
).hidden_states | |
y_rec_16 = self.resample(y_rec) | |
y_rec_embeddings = self.wavlm( | |
input_values=y_rec_16, output_hidden_states=True | |
).hidden_states | |
y_embeddings = ( | |
torch.stack(wav_embeddings, dim=1) | |
.transpose(-1, -2) | |
.flatten(start_dim=1, end_dim=2) | |
) | |
y_rec_embeddings = ( | |
torch.stack(y_rec_embeddings, dim=1) | |
.transpose(-1, -2) | |
.flatten(start_dim=1, end_dim=2) | |
) | |
y_d_rs = self.wd(y_embeddings) | |
y_d_gs = self.wd(y_rec_embeddings) | |
y_df_hat_r, y_df_hat_g = y_d_rs, y_d_gs | |
r_loss = torch.mean((1 - y_df_hat_r) ** 2) | |
g_loss = torch.mean((y_df_hat_g) ** 2) | |
loss_disc_f = r_loss + g_loss | |
return loss_disc_f.mean() | |
def discriminator_forward(self, wav): | |
with torch.no_grad(): | |
wav_16 = self.resample(wav) | |
wav_embeddings = self.wavlm( | |
input_values=wav_16, output_hidden_states=True | |
).hidden_states | |
y_embeddings = ( | |
torch.stack(wav_embeddings, dim=1) | |
.transpose(-1, -2) | |
.flatten(start_dim=1, end_dim=2) | |
) | |
y_d_rs = self.wd(y_embeddings) | |
return y_d_rs | |