import torch import gradio as gr import matplotlib.pyplot as plt from PIL import Image from transformers import SamModel, SamConfig, SamProcessor device = 'cuda' if torch.cuda.is_available() else 'cpu' model_config = SamConfig.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained('facebook/sam-vit-base') # model = SamModel(config=model_config) model = SamModel.from_pretrained('kitooo/sidewalk-seg-base') model.to(device) def segment_sidewalk(image): width, height = image.size prompt = [0, 0, width, height] inputs = processor(image, input_boxes=[[prompt]], return_tensors='pt') with torch.no_grad(): outputs = model(**inputs, multimask_output=False) prob_map = torch.sigmoid(outputs.pred_masks.squeeze()).cpu().detach() prediction = (prob_map > 0.5).float() prob_map, prediction = prob_map.numpy(), prediction.numpy() save_image(image, 'image.png') save_image(prediction, 'mask.png', cmap='gray') save_image(prob_map, 'prob.png', cmap='jet') return Image.open('image.png'), Image.open('mask.png'), Image.open('prob.png') def save_image(image, path, **kwargs): plt.figure(figsize=(8, 8)) plt.imshow(image, interpolation='nearest', **kwargs) plt.axis('off') plt.tight_layout() plt.savefig(path, bbox_inches='tight', pad_inches=0) plt.close() with gr.Blocks() as demo: with gr.Row(): with gr.Column(): image_input = gr.Image(type='pil', label='Original TIFF Image') button = gr.Button('Get Sidewalk Mask') with gr.Column(): mask = gr.Image(type='pil', label='Predicted Mask') prob_map = gr.Image(type='pil', label='Predicted Probability Map') button.click( segment_sidewalk, inputs=[image_input], outputs=[image_input, mask, prob_map] ) demo.launch(debug=True, show_error=True)