Spaces:
Sleeping
Sleeping
File size: 23,209 Bytes
d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 d2635ec c6e9ef2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
'''
ART-JATIC Gradio Example App
To run:
- clone the repository
- execute: gradio examples/gradio_app.py or python examples/gradio_app.py
- navigate to local URL e.g. http://127.0.0.1:7860
'''
import gradio as gr
import numpy as np
from carbon_theme import Carbon
import os
import numpy as np
import matplotlib.pyplot as plt
import torch
import transformers
from art.estimators.classification.hugging_face import HuggingFaceClassifierPyTorch
from art.attacks.evasion import ProjectedGradientDescentPyTorch, AdversarialPatchPyTorch
from art.utils import load_dataset
from art.attacks.poisoning import PoisoningAttackBackdoor
from art.attacks.poisoning.perturbations import insert_image
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
css = """
.input-image { margin: auto !important }
.plot-padding { padding: 20px; }
"""
def clf_evasion_evaluate(*args):
'''
Run a classification task evaluation
'''
attack = args[0]
model_type = args[1]
model_url = args[2]
model_channels = args[3]
model_height = args[4]
model_width = args[5]
model_classes = args[6]
model_clip = args[7]
model_upsample = args[8]
attack_max_iter = args[9]
attack_eps = args[10]
attack_eps_steps = args[11]
x_location = args[12]
y_location = args[13]
patch_height = args[14]
patch_width = args[15]
data_type = args[-1]
if model_type == "Example":
model = transformers.AutoModelForImageClassification.from_pretrained(
'facebook/deit-tiny-distilled-patch16-224',
ignore_mismatched_sizes=True,
num_labels=10
)
upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest')
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = torch.nn.CrossEntropyLoss()
hf_model = HuggingFaceClassifierPyTorch(
model=model,
loss=loss_fn,
optimizer=optimizer,
input_shape=(3, 32, 32),
nb_classes=10,
clip_values=(0, 1),
processor=upsampler
)
model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt'
hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device))
if data_type == "Example":
(x_train, y_train), (_, _), _, _ = load_dataset('cifar10')
x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32)
y_train = np.argmax(y_train, axis=1)
classes = np.unique(y_train)
samples_per_class = 1
x_subset = []
y_subset = []
for c in classes:
indices = y_train == c
x_subset.append(x_train[indices][:samples_per_class])
y_subset.append(y_train[indices][:samples_per_class])
x_subset = np.concatenate(x_subset)
y_subset = np.concatenate(y_subset)
label_names = [
'airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck',
]
outputs = hf_model.predict(x_subset)
clean_preds = np.argmax(outputs, axis=1)
clean_acc = np.mean(clean_preds == y_subset)
benign_gallery_out = []
for i, im in enumerate(x_subset):
benign_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
if attack == "PGD":
attacker = ProjectedGradientDescentPyTorch(hf_model, max_iter=attack_max_iter,
eps=attack_eps, eps_step=attack_eps_steps)
x_adv = attacker.generate(x_subset)
outputs = hf_model.predict(x_adv)
adv_preds = np.argmax(outputs, axis=1)
adv_acc = np.mean(adv_preds == y_subset)
adv_gallery_out = []
for i, im in enumerate(x_adv):
adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
delta = ((x_subset - x_adv) + 8/255) * 10
delta_gallery_out = delta.transpose(0, 2, 3, 1)
if attack == "Adversarial Patch":
scale_min = 0.3
scale_max = 1.0
rotation_max = 0
learning_rate = 5000.
attacker = AdversarialPatchPyTorch(hf_model, scale_max=scale_max,
scale_min=scale_min,
rotation_max=rotation_max,
learning_rate=learning_rate,
max_iter=attack_max_iter, patch_type='square',
patch_location=(x_location, y_location),
patch_shape=(3, patch_height, patch_width))
patch, _ = attacker.generate(x_subset)
x_adv = attacker.apply_patch(x_subset, scale=0.3)
outputs = hf_model.predict(x_adv)
adv_preds = np.argmax(outputs, axis=1)
adv_acc = np.mean(adv_preds == y_subset)
adv_gallery_out = []
for i, im in enumerate(x_adv):
adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
delta_gallery_out = np.expand_dims(patch, 0).transpose(0,2,3,1)
return benign_gallery_out, adv_gallery_out, delta_gallery_out, clean_acc, adv_acc
def clf_poison_evaluate(*args):
attack = args[0]
model_type = args[1]
trigger_image = args[2]
target_class = args[3]
data_type = args[-1]
if model_type == "Example":
model = transformers.AutoModelForImageClassification.from_pretrained(
'facebook/deit-tiny-distilled-patch16-224',
ignore_mismatched_sizes=True,
num_labels=10
)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = torch.nn.CrossEntropyLoss()
hf_model = HuggingFaceClassifierPyTorch(
model=model,
loss=loss_fn,
optimizer=optimizer,
input_shape=(3, 224, 224),
nb_classes=10,
clip_values=(0, 1),
)
if data_type == "Example":
import torchvision
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
])
train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform)
labels = np.asarray(train_dataset.targets)
classes = np.unique(labels)
samples_per_class = 100
x_subset = []
y_subset = []
for c in classes:
indices = np.where(labels == c)[0][:samples_per_class]
for i in indices:
x_subset.append(train_dataset[i][0])
y_subset.append(train_dataset[i][1])
x_subset = np.stack(x_subset)
y_subset = np.asarray(y_subset)
label_names = [
'fish',
'dog',
'cassette player',
'chainsaw',
'church',
'french horn',
'garbage truck',
'gas pump',
'golf ball',
'parachutte',
]
if attack == "Backdoor":
from PIL import Image
im = Image.fromarray(trigger_image)
im.save("./tmp.png")
def poison_func(x):
return insert_image(
x,
backdoor_path='./tmp.png',
channels_first=True,
random=False,
x_shift=0,
y_shift=0,
size=(32, 32),
mode='RGB',
blend=0.8
)
backdoor = PoisoningAttackBackdoor(poison_func)
source_class = 0
poison_percent = 0.5
x_poison = np.copy(x_subset)
y_poison = np.copy(y_subset)
is_poison = np.zeros(len(x_subset)).astype(bool)
indices = np.where(y_subset == source_class)[0]
num_poison = int(poison_percent * len(indices))
for i in indices[:num_poison]:
x_poison[i], _ = backdoor.poison(x_poison[i], [])
y_poison[i] = target_class
is_poison[i] = True
poison_indices = np.where(is_poison)[0]
hf_model.fit(x_poison, y_poison, nb_epochs=2)
clean_x = x_poison[~is_poison]
clean_y = y_poison[~is_poison]
outputs = hf_model.predict(clean_x)
clean_preds = np.argmax(outputs, axis=1)
clean_acc = np.mean(clean_preds == clean_y)
poison_x = x_poison[is_poison]
poison_y = y_poison[is_poison]
outputs = hf_model.predict(poison_x)
poison_preds = np.argmax(outputs, axis=1)
poison_acc = np.mean(poison_preds == poison_y)
poison_out = []
for i, im in enumerate(poison_x):
poison_out.append( (im.transpose(1,2,0), label_names[poison_preds[i]]) )
return poison_out, clean_acc, poison_acc
def show_params(type):
'''
Show model parameters based on selected model type
'''
if type!="Example":
return gr.Column(visible=True)
return gr.Column(visible=False)
def run_inference(*args):
model_type = args[0]
model_url = args[1]
model_channels = args[2]
model_height = args[3]
model_width = args[4]
model_classes = args[5]
model_clip = args[6]
model_upsample = args[7]
data_type = args[8]
if model_type == "Example":
model = transformers.AutoModelForImageClassification.from_pretrained(
'facebook/deit-tiny-distilled-patch16-224',
ignore_mismatched_sizes=True,
num_labels=10
)
upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest')
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = torch.nn.CrossEntropyLoss()
hf_model = HuggingFaceClassifierPyTorch(
model=model,
loss=loss_fn,
optimizer=optimizer,
input_shape=(3, 32, 32),
nb_classes=10,
clip_values=(0, 1),
processor=upsampler
)
model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt'
hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device))
if data_type == "Example":
(x_train, y_train), (_, _), _, _ = load_dataset('cifar10')
x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32)
y_train = np.argmax(y_train, axis=1)
classes = np.unique(y_train)
samples_per_class = 5
x_subset = []
y_subset = []
for c in classes:
indices = y_train == c
x_subset.append(x_train[indices][:samples_per_class])
y_subset.append(y_train[indices][:samples_per_class])
x_subset = np.concatenate(x_subset)
y_subset = np.concatenate(y_subset)
label_names = [
'airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck',
]
outputs = hf_model.predict(x_subset)
clean_preds = np.argmax(outputs, axis=1)
clean_acc = np.mean(clean_preds == y_subset)
gallery_out = []
for i, im in enumerate(x_subset):
gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
return gallery_out, clean_acc
# e.g. To use a local alternative theme: carbon_theme = Carbon()
carbon_theme = Carbon()
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
import art
text = art.__version__
with gr.Row():
with gr.Column(scale=1):
gr.Image(value="./art_lfai.png", show_label=False, show_download_button=False, width=100)
with gr.Column(scale=20):
gr.Markdown(f"<h1>Red-teaming HuggingFace with ART (v{text})</h1>", elem_classes="plot-padding")
gr.Markdown('''This app guides you through a common workflow for assessing the robustness
of HuggingFace models using standard datasets and state-of-the-art adversarial attacks
found within the Adversarial Robustness Toolbox (ART).<br/><br/>Follow the instructions in each
step below to carry out your own evaluation and determine the risks associated with using
some of your favorite models! <b>#redteaming</b> <b>#trustworthyAI</b>''')
# Model and Dataset Selection
with gr.Accordion("1. Model selection", open=False):
gr.Markdown("Select a Hugging Face model to launch an adversarial attack against.")
model_type = gr.Radio(label="Hugging Face Model", choices=["Example", "Other"], value="Example")
with gr.Column(visible=False) as other_model:
model_url = gr.Text(label="Model URL",
placeholder="e.g. facebook/deit-tiny-distilled-patch16-224",
value='facebook/deit-tiny-distilled-patch16-224')
model_input_channels = gr.Text(label="Input channels", value=3)
model_input_height = gr.Text(label="Input height", value=32)
model_input_width = gr.Text(label="Input width", value=32)
model_num_classes = gr.Text(label="Number of classes", value=10)
model_clip_values = gr.Radio(label="Clip values", choices=[1, 255], value=1)
model_upsample_scaling = gr.Slider(label="Upsample scale factor", minimum=1, maximum=10, value=7)
model_type.change(show_params, model_type, other_model)
with gr.Accordion("2. Data selection", open=False):
gr.Markdown("This section enables you to select a dataset for evaluation or upload your own image.")
data_type = gr.Radio(label="Hugging Face dataset", choices=["Example", "URL", "Local"], value="Example")
with gr.Column(visible=False) as other_dataset:
gr.Markdown("Coming soon.")
data_type.change(show_params, data_type, other_dataset)
with gr.Accordion("3. Model inference", open=False):
with gr.Row():
with gr.Column(scale=1):
preds_gallery = gr.Gallery(label="Predictions", preview=False, show_download_button=True)
with gr.Column(scale=2):
clean_accuracy = gr.Number(label="Clean accuracy",
info="The accuracy achieved by the model in normal (non-adversarial) conditions.")
bt_run_inference = gr.Button("Run inference")
bt_clear = gr.ClearButton(components=[preds_gallery, clean_accuracy])
bt_run_inference.click(run_inference, inputs=[model_type, model_url, model_input_channels, model_input_height, model_input_width,
model_num_classes, model_clip_values, model_upsample_scaling, data_type],
outputs=[preds_gallery, clean_accuracy])
# Attack Selection
with gr.Accordion("4. Run attack", open=False):
gr.Markdown("In this section you can select the type of adversarial attack you wish to deploy against your selected model.")
with gr.Accordion("Evasion", open=False):
gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
with gr.Accordion("Projected Gradient Descent", open=False):
gr.Markdown("This attack uses PGD to identify adversarial examples.")
with gr.Row():
with gr.Column(scale=1):
attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False)
max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=10)
eps = gr.Slider(minimum=0.0001, maximum=255, label="Epslion", value=8/255)
eps_steps = gr.Slider(minimum=0.0001, maximum=255, label="Epsilon steps", value=1/255)
bt_eval_pgd = gr.Button("Evaluate")
# Evaluation Output. Visualisations of success/failures of running evaluation attacks.
with gr.Column(scale=3):
with gr.Row():
with gr.Column():
original_gallery = gr.Gallery(label="Original", preview=False, show_download_button=True)
benign_output = gr.Label(num_top_classes=3, visible=False)
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
quality_plot = gr.LinePlot(label="Gradient Quality", x='iteration', y='value', color='metric',
x_title='Iteration', y_title='Avg in Gradients (%)',
caption="""Illustrates the average percent of zero, infinity
or NaN gradients identified in images
across all batches.""", elem_classes="plot-padding", visible=False)
with gr.Column():
adversarial_gallery = gr.Gallery(label="Adversarial", preview=False, show_download_button=True)
adversarial_output = gr.Label(num_top_classes=3, visible=False)
robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
with gr.Column():
delta_gallery = gr.Gallery(label="Added perturbation", preview=False, show_download_button=True)
bt_eval_pgd.click(clf_evasion_evaluate, inputs=[attack, model_type, model_url, model_input_channels, model_input_height, model_input_width,
model_num_classes, model_clip_values, model_upsample_scaling,
max_iter, eps, eps_steps, attack, attack, attack, attack, data_type],
outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy,
robust_accuracy])
with gr.Accordion("Adversarial Patch", open=False):
gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.")
with gr.Row():
with gr.Column(scale=1):
attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=10)
x_location = gr.Slider(minimum=1, maximum=32, label="Location (x)", value=1)
y_location = gr.Slider(minimum=1, maximum=32, label="Location (y)", value=1)
patch_height = gr.Slider(minimum=1, maximum=32, label="Patch height", value=12)
patch_width = gr.Slider(minimum=1, maximum=32, label="Patch width", value=12)
eval_btn_patch = gr.Button("Evaluate")
# Evaluation Output. Visualisations of success/failures of running evaluation attacks.
with gr.Column(scale=3):
with gr.Row():
with gr.Column():
original_gallery = gr.Gallery(label="Original", preview=False, show_download_button=True)
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
with gr.Column():
adversarial_gallery = gr.Gallery(label="Adversarial", preview=False, show_download_button=True)
robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
with gr.Column():
delta_gallery = gr.Gallery(label="Patches", preview=False, show_download_button=True)
eval_btn_patch.click(clf_evasion_evaluate, inputs=[attack, model_type, model_url, model_input_channels, model_input_height, model_input_width,
model_num_classes, model_clip_values, model_upsample_scaling,
max_iter, eps, eps_steps, x_location, y_location, patch_height, patch_width, data_type],
outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy,
robust_accuracy])
with gr.Accordion("Poisoning", open=False):
with gr.Accordion("Backdoor"):
with gr.Row():
with gr.Column(scale=1):
attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False)
target_class = gr.Number(label="Target class", info="The class you wish to force the model to predict.",
minimum=1, maximum=9, value=1)
trigger_image = gr.Image(label="Trigger Image", value="./baby-on-board.png")
eval_btn_patch = gr.Button("Evaluate")
with gr.Column(scale=2):
poison_gallery = gr.Gallery(label="Poisoned", preview=False, show_download_button=True)
with gr.Column(scale=2):
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
poison_success = gr.Number(label="Poison Success", precision=2)
eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, model_type, trigger_image, target_class, data_type],
outputs=[poison_gallery, clean_accuracy, poison_success])
if __name__ == "__main__":
# during development, set debug=True
demo.launch(show_api=False, debug=True, share=False,
server_name="0.0.0.0",
server_port=7777,
ssl_verify=False,
max_threads=20)
'''demo.launch(share=True, ssl_verify=False)''' |