File size: 23,209 Bytes
d2635ec
 
 
 
 
 
 
 
 
c6e9ef2
d2635ec
 
 
 
c6e9ef2
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
d2635ec
 
 
 
 
 
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
d2635ec
c6e9ef2
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
d2635ec
 
 
c6e9ef2
d2635ec
 
c6e9ef2
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
 
 
c6e9ef2
d2635ec
 
 
c6e9ef2
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
 
c6e9ef2
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
d2635ec
c6e9ef2
 
 
 
d2635ec
c6e9ef2
 
 
 
 
d2635ec
c6e9ef2
d2635ec
c6e9ef2
 
 
 
 
 
d2635ec
c6e9ef2
 
d2635ec
 
c6e9ef2
 
 
 
 
 
 
 
d2635ec
 
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
d2635ec
 
c6e9ef2
 
d2635ec
 
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
d2635ec
c6e9ef2
 
 
d2635ec
 
 
c6e9ef2
d2635ec
 
 
c6e9ef2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
'''
ART-JATIC Gradio Example App

To run: 
- clone the repository
- execute: gradio examples/gradio_app.py or python examples/gradio_app.py
- navigate to local URL e.g. http://127.0.0.1:7860
'''

import gradio as gr
import numpy as np
from carbon_theme import Carbon

import os

import numpy as np
import matplotlib.pyplot as plt
import torch
import transformers

from art.estimators.classification.hugging_face import HuggingFaceClassifierPyTorch
from art.attacks.evasion import ProjectedGradientDescentPyTorch, AdversarialPatchPyTorch
from art.utils import load_dataset

from art.attacks.poisoning import PoisoningAttackBackdoor
from art.attacks.poisoning.perturbations import insert_image

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

css = """
.input-image { margin: auto !important }
.plot-padding { padding: 20px; }
"""

def clf_evasion_evaluate(*args):
    '''
    Run a classification task evaluation
    '''
    attack = args[0]
    model_type = args[1]
    model_url = args[2]
    model_channels = args[3]
    model_height = args[4]
    model_width = args[5]
    model_classes = args[6]
    model_clip = args[7]
    model_upsample = args[8]
    attack_max_iter = args[9]
    attack_eps = args[10]
    attack_eps_steps = args[11]
    x_location = args[12]
    y_location = args[13]
    patch_height = args[14] 
    patch_width = args[15] 
    data_type = args[-1]
    
    if model_type == "Example":
        model = transformers.AutoModelForImageClassification.from_pretrained(
            'facebook/deit-tiny-distilled-patch16-224',
            ignore_mismatched_sizes=True,
            num_labels=10
        )
        upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest')
        optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
        loss_fn = torch.nn.CrossEntropyLoss()

        hf_model = HuggingFaceClassifierPyTorch(
            model=model,
            loss=loss_fn,
            optimizer=optimizer,
            input_shape=(3, 32, 32),
            nb_classes=10,
            clip_values=(0, 1),
            processor=upsampler
        )
        model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt'
        hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device))
        
    if data_type == "Example":
        (x_train, y_train), (_, _), _, _ = load_dataset('cifar10')
        x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32)
        y_train = np.argmax(y_train, axis=1)

        classes = np.unique(y_train)
        samples_per_class = 1

        x_subset = []
        y_subset = []

        for c in classes:
            indices = y_train == c
            x_subset.append(x_train[indices][:samples_per_class])
            y_subset.append(y_train[indices][:samples_per_class])

        x_subset = np.concatenate(x_subset)
        y_subset = np.concatenate(y_subset)
        
        label_names = [
            'airplane',
            'automobile',
            'bird',
            'cat',
            'deer',
            'dog',
            'frog',
            'horse',
            'ship',
            'truck',
        ]
        
    outputs = hf_model.predict(x_subset)
    clean_preds = np.argmax(outputs, axis=1)
    clean_acc = np.mean(clean_preds == y_subset)
    benign_gallery_out = []
    for i, im in enumerate(x_subset):
        benign_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
        
    if attack == "PGD":
        attacker = ProjectedGradientDescentPyTorch(hf_model, max_iter=attack_max_iter,
                                                eps=attack_eps, eps_step=attack_eps_steps)
        x_adv = attacker.generate(x_subset)
        
        outputs = hf_model.predict(x_adv)
        adv_preds = np.argmax(outputs, axis=1)
        adv_acc = np.mean(adv_preds == y_subset)
        adv_gallery_out = []
        for i, im in enumerate(x_adv):
            adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
            
        delta = ((x_subset - x_adv) + 8/255) * 10
        delta_gallery_out = delta.transpose(0, 2, 3, 1)
        
    if attack == "Adversarial Patch":
        scale_min = 0.3
        scale_max = 1.0
        rotation_max = 0
        learning_rate = 5000.
        attacker = AdversarialPatchPyTorch(hf_model, scale_max=scale_max,
                                           scale_min=scale_min,
                                           rotation_max=rotation_max,
                                           learning_rate=learning_rate,
                                           max_iter=attack_max_iter, patch_type='square',
                                                patch_location=(x_location, y_location),
                                                patch_shape=(3, patch_height, patch_width))
        patch, _ = attacker.generate(x_subset)
        x_adv = attacker.apply_patch(x_subset, scale=0.3)
        
        outputs = hf_model.predict(x_adv)
        adv_preds = np.argmax(outputs, axis=1)
        adv_acc = np.mean(adv_preds == y_subset)
        adv_gallery_out = []
        for i, im in enumerate(x_adv):
            adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
            
        delta_gallery_out = np.expand_dims(patch, 0).transpose(0,2,3,1)
    
    return benign_gallery_out, adv_gallery_out, delta_gallery_out, clean_acc, adv_acc

def clf_poison_evaluate(*args):
    
    attack = args[0]
    model_type = args[1]
    trigger_image = args[2]
    target_class = args[3]
    data_type = args[-1]
    
    if model_type == "Example":
        model = transformers.AutoModelForImageClassification.from_pretrained(
            'facebook/deit-tiny-distilled-patch16-224',
            ignore_mismatched_sizes=True,
            num_labels=10
        )
        optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
        loss_fn = torch.nn.CrossEntropyLoss()

        hf_model = HuggingFaceClassifierPyTorch(
            model=model,
            loss=loss_fn,
            optimizer=optimizer,
            input_shape=(3, 224, 224),
            nb_classes=10,
            clip_values=(0, 1),
        )
        
    if data_type == "Example":
        import torchvision
        transform = torchvision.transforms.Compose([
            torchvision.transforms.Resize((224, 224)),
            torchvision.transforms.ToTensor(),
        ])
        train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform)
        labels = np.asarray(train_dataset.targets)
        classes = np.unique(labels)
        samples_per_class = 100

        x_subset = []
        y_subset = []

        for c in classes:
            indices = np.where(labels == c)[0][:samples_per_class]
            for i in indices:
                x_subset.append(train_dataset[i][0])
                y_subset.append(train_dataset[i][1])

        x_subset = np.stack(x_subset)
        y_subset = np.asarray(y_subset)
        label_names = [
            'fish',
            'dog',
            'cassette player',
            'chainsaw',
            'church',
            'french horn',
            'garbage truck',
            'gas pump',
            'golf ball',
            'parachutte',
        ]
        
    if attack == "Backdoor":
        from PIL import Image
        im = Image.fromarray(trigger_image)
        im.save("./tmp.png")
        def poison_func(x):
            return insert_image(
                x,
                backdoor_path='./tmp.png',
                channels_first=True,
                random=False,
                x_shift=0,
                y_shift=0,
                size=(32, 32),
                mode='RGB',
                blend=0.8
            )
        backdoor = PoisoningAttackBackdoor(poison_func)
        source_class = 0
        poison_percent = 0.5

        x_poison = np.copy(x_subset)
        y_poison = np.copy(y_subset)
        is_poison = np.zeros(len(x_subset)).astype(bool)

        indices = np.where(y_subset == source_class)[0]
        num_poison = int(poison_percent * len(indices))

        for i in indices[:num_poison]:
            x_poison[i], _ = backdoor.poison(x_poison[i], [])
            y_poison[i] = target_class
            is_poison[i] = True

        poison_indices = np.where(is_poison)[0]
        hf_model.fit(x_poison, y_poison, nb_epochs=2)
        
        clean_x = x_poison[~is_poison]
        clean_y = y_poison[~is_poison]

        outputs = hf_model.predict(clean_x)
        clean_preds = np.argmax(outputs, axis=1)
        clean_acc = np.mean(clean_preds == clean_y)
        
        poison_x = x_poison[is_poison]
        poison_y = y_poison[is_poison]

        outputs = hf_model.predict(poison_x)
        poison_preds = np.argmax(outputs, axis=1)
        poison_acc = np.mean(poison_preds == poison_y)
        
        poison_out = []
        for i, im in enumerate(poison_x):
            poison_out.append( (im.transpose(1,2,0), label_names[poison_preds[i]]) )
        
        return poison_out, clean_acc, poison_acc
        
    
def show_params(type):
    '''
    Show model parameters based on selected model type
    '''
    if type!="Example":
        return gr.Column(visible=True)
    return gr.Column(visible=False)

def run_inference(*args):
    model_type = args[0]
    model_url = args[1]
    model_channels = args[2]
    model_height = args[3]
    model_width = args[4]
    model_classes = args[5]
    model_clip = args[6]
    model_upsample = args[7]
    data_type = args[8]
    
    if model_type == "Example":
        model = transformers.AutoModelForImageClassification.from_pretrained(
            'facebook/deit-tiny-distilled-patch16-224',
            ignore_mismatched_sizes=True,
            num_labels=10
        )
        upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest')
        optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
        loss_fn = torch.nn.CrossEntropyLoss()

        hf_model = HuggingFaceClassifierPyTorch(
            model=model,
            loss=loss_fn,
            optimizer=optimizer,
            input_shape=(3, 32, 32),
            nb_classes=10,
            clip_values=(0, 1),
            processor=upsampler
        )
        model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt'
        hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device))
        
    if data_type == "Example":
        (x_train, y_train), (_, _), _, _ = load_dataset('cifar10')
        x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32)
        y_train = np.argmax(y_train, axis=1)

        classes = np.unique(y_train)
        samples_per_class = 5

        x_subset = []
        y_subset = []

        for c in classes:
            indices = y_train == c
            x_subset.append(x_train[indices][:samples_per_class])
            y_subset.append(y_train[indices][:samples_per_class])

        x_subset = np.concatenate(x_subset)
        y_subset = np.concatenate(y_subset)
        
        label_names = [
            'airplane',
            'automobile',
            'bird',
            'cat',
            'deer',
            'dog',
            'frog',
            'horse',
            'ship',
            'truck',
        ]
        
    outputs = hf_model.predict(x_subset)
    clean_preds = np.argmax(outputs, axis=1)
    clean_acc = np.mean(clean_preds == y_subset)
    gallery_out = []
    for i, im in enumerate(x_subset):
        gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
        
    return gallery_out, clean_acc
        
    

# e.g. To use a local alternative theme: carbon_theme = Carbon()
carbon_theme = Carbon()
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
    import art
    text = art.__version__
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Image(value="./art_lfai.png", show_label=False, show_download_button=False, width=100)
        with gr.Column(scale=20):
            gr.Markdown(f"<h1>Red-teaming HuggingFace with ART (v{text})</h1>", elem_classes="plot-padding")
        
    
    gr.Markdown('''This app guides you through a common workflow for assessing the robustness
                of HuggingFace models using standard datasets and state-of-the-art adversarial attacks
                found within the Adversarial Robustness Toolbox (ART).<br/><br/>Follow the instructions in each
                step below to carry out your own evaluation and determine the risks associated with using
                some of your favorite models! <b>#redteaming</b> <b>#trustworthyAI</b>''')
    
    # Model and Dataset Selection
    with gr.Accordion("1. Model selection", open=False):
        
        gr.Markdown("Select a Hugging Face model to launch an adversarial attack against.")
        model_type = gr.Radio(label="Hugging Face Model", choices=["Example", "Other"], value="Example")
        with gr.Column(visible=False) as other_model:
            model_url = gr.Text(label="Model URL",
                    placeholder="e.g. facebook/deit-tiny-distilled-patch16-224",
                    value='facebook/deit-tiny-distilled-patch16-224')
            model_input_channels = gr.Text(label="Input channels", value=3)
            model_input_height = gr.Text(label="Input height", value=32)
            model_input_width = gr.Text(label="Input width", value=32)
            model_num_classes = gr.Text(label="Number of classes", value=10)
            model_clip_values = gr.Radio(label="Clip values", choices=[1, 255], value=1)
            model_upsample_scaling = gr.Slider(label="Upsample scale factor", minimum=1, maximum=10, value=7)
        
        model_type.change(show_params, model_type, other_model)
        
    with gr.Accordion("2. Data selection", open=False):
        gr.Markdown("This section enables you to select a dataset for evaluation or upload your own image.")
        data_type = gr.Radio(label="Hugging Face dataset", choices=["Example", "URL", "Local"], value="Example")
        with gr.Column(visible=False) as other_dataset:
            gr.Markdown("Coming soon.")
        data_type.change(show_params, data_type, other_dataset)
    
    with gr.Accordion("3. Model inference", open=False):
        
        with gr.Row():
            with gr.Column(scale=1):
                preds_gallery = gr.Gallery(label="Predictions", preview=False, show_download_button=True)
            with gr.Column(scale=2):
                clean_accuracy = gr.Number(label="Clean accuracy", 
                                        info="The accuracy achieved by the model in normal (non-adversarial) conditions.")
                bt_run_inference = gr.Button("Run inference")
                bt_clear = gr.ClearButton(components=[preds_gallery, clean_accuracy])
            
        bt_run_inference.click(run_inference, inputs=[model_type, model_url, model_input_channels, model_input_height, model_input_width,
                                                      model_num_classes, model_clip_values, model_upsample_scaling, data_type],
                               outputs=[preds_gallery, clean_accuracy])
        
    # Attack Selection
    with gr.Accordion("4. Run attack", open=False):
        
        gr.Markdown("In this section you can select the type of adversarial attack you wish to deploy against your selected model.")
            
        with gr.Accordion("Evasion", open=False):
            gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
            
            with gr.Accordion("Projected Gradient Descent", open=False):
                gr.Markdown("This attack uses PGD to identify adversarial examples.")
                
                with gr.Row():
                    
                    with gr.Column(scale=1):
                        attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False)
                        max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=10)
                        eps = gr.Slider(minimum=0.0001, maximum=255, label="Epslion", value=8/255) 
                        eps_steps = gr.Slider(minimum=0.0001, maximum=255, label="Epsilon steps", value=1/255) 
                        bt_eval_pgd = gr.Button("Evaluate")
                        
                    # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                    with gr.Column(scale=3):
                        with gr.Row():
                            with gr.Column():
                                original_gallery = gr.Gallery(label="Original", preview=False, show_download_button=True)
                                benign_output = gr.Label(num_top_classes=3, visible=False)
                                clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
                                quality_plot = gr.LinePlot(label="Gradient Quality", x='iteration', y='value', color='metric',
                                                            x_title='Iteration', y_title='Avg in Gradients (%)', 
                                                            caption="""Illustrates the average percent of zero, infinity 
                                                            or NaN gradients identified in images
                                                            across all batches.""", elem_classes="plot-padding", visible=False)
                                
                            with gr.Column():
                                adversarial_gallery = gr.Gallery(label="Adversarial", preview=False, show_download_button=True)
                                adversarial_output = gr.Label(num_top_classes=3, visible=False)
                                robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
                                
                            with gr.Column():
                                delta_gallery = gr.Gallery(label="Added perturbation", preview=False, show_download_button=True)
                                
                    bt_eval_pgd.click(clf_evasion_evaluate, inputs=[attack, model_type, model_url, model_input_channels, model_input_height, model_input_width,
                                                                    model_num_classes, model_clip_values, model_upsample_scaling, 
                                                                    max_iter, eps, eps_steps, attack, attack, attack, attack, data_type],
                                                            outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy,
                                                                    robust_accuracy])
                    
            with gr.Accordion("Adversarial Patch", open=False):
                gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.")
                
                with gr.Row():
                    
                    with gr.Column(scale=1):
                        attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
                        max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=10)
                        x_location = gr.Slider(minimum=1, maximum=32, label="Location (x)", value=1) 
                        y_location = gr.Slider(minimum=1, maximum=32, label="Location (y)", value=1) 
                        patch_height = gr.Slider(minimum=1, maximum=32, label="Patch height", value=12) 
                        patch_width = gr.Slider(minimum=1, maximum=32, label="Patch width", value=12) 
                        eval_btn_patch = gr.Button("Evaluate")
                        
                    # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                    with gr.Column(scale=3):
                        with gr.Row():
                            with gr.Column():
                                original_gallery = gr.Gallery(label="Original", preview=False, show_download_button=True)
                                clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
                                
                            with gr.Column():
                                adversarial_gallery = gr.Gallery(label="Adversarial", preview=False, show_download_button=True)
                                robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
                                
                            with gr.Column():
                                delta_gallery = gr.Gallery(label="Patches", preview=False, show_download_button=True)
                                
                    eval_btn_patch.click(clf_evasion_evaluate, inputs=[attack, model_type, model_url, model_input_channels, model_input_height, model_input_width,
                                                                    model_num_classes, model_clip_values, model_upsample_scaling, 
                                                                    max_iter, eps, eps_steps, x_location, y_location, patch_height, patch_width, data_type],
                                                            outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy,
                                                                    robust_accuracy])
                                
        with gr.Accordion("Poisoning", open=False):
                
            with gr.Accordion("Backdoor"):
                
                with gr.Row():
                    with gr.Column(scale=1):
                        attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False)
                        target_class = gr.Number(label="Target class", info="The class you wish to force the model to predict.",
                                                    minimum=1, maximum=9, value=1)
                        trigger_image = gr.Image(label="Trigger Image",  value="./baby-on-board.png")
                        eval_btn_patch = gr.Button("Evaluate")
                    with gr.Column(scale=2):
                        poison_gallery = gr.Gallery(label="Poisoned", preview=False, show_download_button=True)
                    with gr.Column(scale=2):
                        clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
                        poison_success = gr.Number(label="Poison Success", precision=2)
                    
                eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, model_type, trigger_image, target_class, data_type],
                            outputs=[poison_gallery, clean_accuracy, poison_success])  

if __name__ == "__main__":
    
    # during development, set debug=True
    demo.launch(show_api=False, debug=True, share=False,
                server_name="0.0.0.0", 
                server_port=7777, 
                ssl_verify=False,
                max_threads=20)
    '''demo.launch(share=True, ssl_verify=False)'''