File size: 13,582 Bytes
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import math
import os
import random
import string
from tqdm import tqdm

import torch
import torch.nn.functional as F
import torchaudio

from f5_tts.model.modules import MelSpec
from f5_tts.model.utils import convert_char_to_pinyin
from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL


# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
def get_seedtts_testset_metainfo(metalst):
    f = open(metalst)
    lines = f.readlines()
    f.close()
    metainfo = []
    for line in lines:
        if len(line.strip().split("|")) == 5:
            utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
        elif len(line.strip().split("|")) == 4:
            utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
            gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
        if not os.path.isabs(prompt_wav):
            prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
        metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
    return metainfo


# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
    f = open(metalst)
    lines = f.readlines()
    f.close()
    metainfo = []
    for line in lines:
        ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")

        # ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.'  # if use librispeech test-clean (no-pc)
        ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
        ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")

        # gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.'  # if use librispeech test-clean (no-pc)
        gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
        gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")

        metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))

    return metainfo


# padded to max length mel batch
def padded_mel_batch(ref_mels):
    max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
    padded_ref_mels = []
    for mel in ref_mels:
        padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0)
        padded_ref_mels.append(padded_ref_mel)
    padded_ref_mels = torch.stack(padded_ref_mels)
    padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
    return padded_ref_mels


# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav


def get_inference_prompt(
    metainfo,
    speed=1.0,
    tokenizer="pinyin",
    polyphone=True,
    target_sample_rate=24000,
    n_mel_channels=100,
    hop_length=256,
    target_rms=0.1,
    use_truth_duration=False,
    infer_batch_size=1,
    num_buckets=200,
    min_secs=3,
    max_secs=40,
):
    prompts_all = []

    min_tokens = min_secs * target_sample_rate // hop_length
    max_tokens = max_secs * target_sample_rate // hop_length

    batch_accum = [0] * num_buckets
    utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
        [[] for _ in range(num_buckets)] for _ in range(6)
    )

    mel_spectrogram = MelSpec(
        target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
    )

    for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
        # Audio
        ref_audio, ref_sr = torchaudio.load(prompt_wav)
        ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
        if ref_rms < target_rms:
            ref_audio = ref_audio * target_rms / ref_rms
        assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
        if ref_sr != target_sample_rate:
            resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
            ref_audio = resampler(ref_audio)

        # Text
        if len(prompt_text[-1].encode("utf-8")) == 1:
            prompt_text = prompt_text + " "
        text = [prompt_text + gt_text]
        if tokenizer == "pinyin":
            text_list = convert_char_to_pinyin(text, polyphone=polyphone)
        else:
            text_list = text

        # Duration, mel frame length
        ref_mel_len = ref_audio.shape[-1] // hop_length
        if use_truth_duration:
            gt_audio, gt_sr = torchaudio.load(gt_wav)
            if gt_sr != target_sample_rate:
                resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
                gt_audio = resampler(gt_audio)
            total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)

            # # test vocoder resynthesis
            # ref_audio = gt_audio
        else:
            ref_text_len = len(prompt_text.encode("utf-8"))
            gen_text_len = len(gt_text.encode("utf-8"))
            total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)

        # to mel spectrogram
        ref_mel = mel_spectrogram(ref_audio)
        ref_mel = ref_mel.squeeze(0)

        # deal with batch
        assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
        assert (
            min_tokens <= total_mel_len <= max_tokens
        ), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
        bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)

        utts[bucket_i].append(utt)
        ref_rms_list[bucket_i].append(ref_rms)
        ref_mels[bucket_i].append(ref_mel)
        ref_mel_lens[bucket_i].append(ref_mel_len)
        total_mel_lens[bucket_i].append(total_mel_len)
        final_text_list[bucket_i].extend(text_list)

        batch_accum[bucket_i] += total_mel_len

        if batch_accum[bucket_i] >= infer_batch_size:
            # print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
            prompts_all.append(
                (
                    utts[bucket_i],
                    ref_rms_list[bucket_i],
                    padded_mel_batch(ref_mels[bucket_i]),
                    ref_mel_lens[bucket_i],
                    total_mel_lens[bucket_i],
                    final_text_list[bucket_i],
                )
            )
            batch_accum[bucket_i] = 0
            (
                utts[bucket_i],
                ref_rms_list[bucket_i],
                ref_mels[bucket_i],
                ref_mel_lens[bucket_i],
                total_mel_lens[bucket_i],
                final_text_list[bucket_i],
            ) = [], [], [], [], [], []

    # add residual
    for bucket_i, bucket_frames in enumerate(batch_accum):
        if bucket_frames > 0:
            prompts_all.append(
                (
                    utts[bucket_i],
                    ref_rms_list[bucket_i],
                    padded_mel_batch(ref_mels[bucket_i]),
                    ref_mel_lens[bucket_i],
                    total_mel_lens[bucket_i],
                    final_text_list[bucket_i],
                )
            )
    # not only leave easy work for last workers
    random.seed(666)
    random.shuffle(prompts_all)

    return prompts_all


# get wav_res_ref_text of seed-tts test metalst
# https://github.com/BytedanceSpeech/seed-tts-eval


def get_seed_tts_test(metalst, gen_wav_dir, gpus):
    f = open(metalst)
    lines = f.readlines()
    f.close()

    test_set_ = []
    for line in tqdm(lines):
        if len(line.strip().split("|")) == 5:
            utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
        elif len(line.strip().split("|")) == 4:
            utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")

        if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")):
            continue
        gen_wav = os.path.join(gen_wav_dir, utt + ".wav")
        if not os.path.isabs(prompt_wav):
            prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)

        test_set_.append((gen_wav, prompt_wav, gt_text))

    num_jobs = len(gpus)
    if num_jobs == 1:
        return [(gpus[0], test_set_)]

    wav_per_job = len(test_set_) // num_jobs + 1
    test_set = []
    for i in range(num_jobs):
        test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))

    return test_set


# get librispeech test-clean cross sentence test


def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False):
    f = open(metalst)
    lines = f.readlines()
    f.close()

    test_set_ = []
    for line in tqdm(lines):
        ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")

        if eval_ground_truth:
            gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
            gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
        else:
            if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")):
                raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
            gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav")

        ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
        ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")

        test_set_.append((gen_wav, ref_wav, gen_txt))

    num_jobs = len(gpus)
    if num_jobs == 1:
        return [(gpus[0], test_set_)]

    wav_per_job = len(test_set_) // num_jobs + 1
    test_set = []
    for i in range(num_jobs):
        test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))

    return test_set


# load asr model


def load_asr_model(lang, ckpt_dir=""):
    if lang == "zh":
        from funasr import AutoModel

        model = AutoModel(
            model=os.path.join(ckpt_dir, "paraformer-zh"),
            # vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
            # punc_model = os.path.join(ckpt_dir, "ct-punc"),
            # spk_model = os.path.join(ckpt_dir, "cam++"),
            disable_update=True,
        )  # following seed-tts setting
    elif lang == "en":
        from faster_whisper import WhisperModel

        model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
        model = WhisperModel(model_size, device="cuda", compute_type="float16")
    return model


# WER Evaluation, the way Seed-TTS does


def run_asr_wer(args):
    rank, lang, test_set, ckpt_dir = args

    if lang == "zh":
        import zhconv

        torch.cuda.set_device(rank)
    elif lang == "en":
        os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
    else:
        raise NotImplementedError(
            "lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now."
        )

    asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir)

    from zhon.hanzi import punctuation

    punctuation_all = punctuation + string.punctuation
    wers = []

    from jiwer import compute_measures

    for gen_wav, prompt_wav, truth in tqdm(test_set):
        if lang == "zh":
            res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
            hypo = res[0]["text"]
            hypo = zhconv.convert(hypo, "zh-cn")
        elif lang == "en":
            segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
            hypo = ""
            for segment in segments:
                hypo = hypo + " " + segment.text

        # raw_truth = truth
        # raw_hypo = hypo

        for x in punctuation_all:
            truth = truth.replace(x, "")
            hypo = hypo.replace(x, "")

        truth = truth.replace("  ", " ")
        hypo = hypo.replace("  ", " ")

        if lang == "zh":
            truth = " ".join([x for x in truth])
            hypo = " ".join([x for x in hypo])
        elif lang == "en":
            truth = truth.lower()
            hypo = hypo.lower()

        measures = compute_measures(truth, hypo)
        wer = measures["wer"]

        # ref_list = truth.split(" ")
        # subs = measures["substitutions"] / len(ref_list)
        # dele = measures["deletions"] / len(ref_list)
        # inse = measures["insertions"] / len(ref_list)

        wers.append(wer)

    return wers


# SIM Evaluation


def run_sim(args):
    rank, test_set, ckpt_dir = args
    device = f"cuda:{rank}"

    model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None)
    state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
    model.load_state_dict(state_dict["model"], strict=False)

    use_gpu = True if torch.cuda.is_available() else False
    if use_gpu:
        model = model.cuda(device)
    model.eval()

    sim_list = []
    for wav1, wav2, truth in tqdm(test_set):
        wav1, sr1 = torchaudio.load(wav1)
        wav2, sr2 = torchaudio.load(wav2)

        resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
        resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
        wav1 = resample1(wav1)
        wav2 = resample2(wav2)

        if use_gpu:
            wav1 = wav1.cuda(device)
            wav2 = wav2.cuda(device)
        with torch.no_grad():
            emb1 = model(wav1)
            emb2 = model(wav2)

        sim = F.cosine_similarity(emb1, emb2)[0].item()
        # print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
        sim_list.append(sim)

    return sim_list