Spaces:
Runtime error
Runtime error
import os | |
gpt_path = os.environ.get( | |
"gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
) | |
sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth") | |
cnhubert_base_path = os.environ.get( | |
"cnhubert_base_path", "pretrained_models/chinese-hubert-base" | |
) | |
bert_path = os.environ.get( | |
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large" | |
) | |
infer_ttswebui = os.environ.get("infer_ttswebui", 9872) | |
infer_ttswebui = int(infer_ttswebui) | |
if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
is_half = eval(os.environ.get("is_half", "True")) | |
import gradio as gr | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import numpy as np | |
import librosa,torch | |
from feature_extractor import cnhubert | |
cnhubert.cnhubert_base_path=cnhubert_base_path | |
from module.models import SynthesizerTrn | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from text import cleaned_text_to_sequence | |
from text.cleaner import clean_text | |
from time import time as ttime | |
from module.mel_processing import spectrogram_torch | |
from my_utils import load_audio | |
device = "cuda" | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
# bert_model=bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
# if(is_half==True):phone_level_feature=phone_level_feature.half() | |
return phone_level_feature.T | |
n_semantic = 1024 | |
dict_s2=torch.load(sovits_path,map_location="cpu") | |
hps=dict_s2["config"] | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model | |
) | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
hz = 50 | |
max_sec = config["data"]["max_sec"] | |
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo | |
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
dict_language = {"中文": "zh", "英文": "en", "日文": "ja"} | |
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): | |
t0 = ttime() | |
prompt_text = prompt_text.strip("\n") | |
prompt_language, text = prompt_language, text.strip("\n") | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙 | |
wav16k = torch.from_numpy(wav16k) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) | |
phones1 = cleaned_text_to_sequence(phones1) | |
texts = text.split("\n") | |
audio_opt = [] | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
for text in texts: | |
phones2, word2ph2, norm_text2 = clean_text(text, text_language) | |
phones2 = cleaned_text_to_sequence(phones2) | |
if prompt_language == "zh": | |
bert1 = get_bert_feature(norm_text1, word2ph1).to(device) | |
else: | |
bert1 = torch.zeros( | |
(1024, len(phones1)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
if text_language == "zh": | |
bert2 = get_bert_feature(norm_text2, word2ph2).to(device) | |
else: | |
bert2 = torch.zeros((1024, len(phones2))).to(bert1) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config["inference"]["top_k"], | |
early_stop_num=hz * max_sec, | |
) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze( | |
0 | |
) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path) # .to(device) | |
if is_half == True: | |
refer = refer.half().to(device) | |
else: | |
refer = refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = ( | |
vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer | |
) | |
.detach() | |
.cpu() | |
.numpy()[0, 0] | |
) ###试试重建不带上prompt部分 | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( | |
np.int16 | |
) | |
splits = { | |
",", | |
"。", | |
"?", | |
"!", | |
",", | |
".", | |
"?", | |
"!", | |
"~", | |
":", | |
":", | |
"—", | |
"…", | |
} # 不考虑省略号 | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in splits: | |
todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if todo_text[i_split_head] in splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
split_idx = list(range(0, len(inps), 5)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
if len(inps) < 2: | |
return [inp] | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")]) | |
with gr.Blocks(title="GPT-SoVITS WebUI") as app: | |
gr.Markdown( | |
value="本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>." | |
) | |
# with gr.Tabs(): | |
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): | |
with gr.Group(): | |
gr.Markdown(value="*请上传并填写参考信息") | |
with gr.Row(): | |
inp_ref = gr.Audio(label="请上传参考音频", type="filepath") | |
prompt_text = gr.Textbox(label="参考音频的文本", value="") | |
prompt_language = gr.Dropdown( | |
label="参考音频的语种", choices=["中文", "英文", "日文"], value="中文" | |
) | |
gr.Markdown(value="*请填写需要合成的目标文本") | |
with gr.Row(): | |
text = gr.Textbox(label="需要合成的文本", value="") | |
text_language = gr.Dropdown( | |
label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文" | |
) | |
inference_button = gr.Button("合成语音", variant="primary") | |
output = gr.Audio(label="输出的语音") | |
inference_button.click( | |
get_tts_wav, | |
[inp_ref, prompt_text, prompt_language, text, text_language], | |
[output], | |
) | |
gr.Markdown(value="文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。") | |
with gr.Row(): | |
text_inp = gr.Textbox(label="需要合成的切分前文本", value="") | |
button1 = gr.Button("凑五句一切", variant="primary") | |
button2 = gr.Button("凑50字一切", variant="primary") | |
button3 = gr.Button("按中文句号。切", variant="primary") | |
text_opt = gr.Textbox(label="切分后文本", value="") | |
button1.click(cut1, [text_inp], [text_opt]) | |
button2.click(cut2, [text_inp], [text_opt]) | |
button3.click(cut3, [text_inp], [text_opt]) | |
gr.Markdown(value="后续将支持混合语种编码文本输入。") | |
app.queue(concurrency_count=511, max_size=1022).launch( | |
server_name="0.0.0.0", | |
inbrowser=True, | |
server_port=infer_ttswebui, | |
quiet=True, | |
) | |