wondervictor's picture
add app
a93afca
raw
history blame
33.5 kB
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'
import datetime
import io
import os
import math
import time
import json
import argparse
import numpy as np
from pathlib import Path
from collections import defaultdict, deque
from timm.utils import get_state_dict
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch._six import inf
from torchmetrics import Metric
from tensorboardX import SummaryWriter
def bool_flag(s):
"""
Parse boolean arguments from the command line.
"""
FALSY_STRINGS = {"off", "false", "0"}
TRUTHY_STRINGS = {"on", "true", "1"}
if s.lower() in FALSY_STRINGS:
return False
elif s.lower() in TRUTHY_STRINGS:
return True
else:
raise argparse.ArgumentTypeError("invalid value for a boolean flag")
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
class TensorboardLogger(object):
def __init__(self, log_dir):
self.writer = SummaryWriter(logdir=log_dir)
self.step = 0
def set_step(self, step=None):
if step is not None:
self.step = step
else:
self.step += 1
def update(self, head='scalar', step=None, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step)
def flush(self):
self.writer.flush()
def _load_checkpoint_for_ema(model_ema, checkpoint):
"""
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
"""
mem_file = io.BytesIO()
torch.save(checkpoint, mem_file)
mem_file.seek(0)
model_ema._load_checkpoint(mem_file)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def _get_rank_env():
if "RANK" in os.environ:
return int(os.environ["RANK"])
else:
return int(os.environ['OMPI_COMM_WORLD_RANK'])
def _get_local_rank_env():
if "LOCAL_RANK" in os.environ:
return int(os.environ["LOCAL_RANK"])
else:
return int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
def _get_world_size_env():
if "WORLD_SIZE" in os.environ:
return int(os.environ["WORLD_SIZE"])
else:
return int(os.environ['OMPI_COMM_WORLD_SIZE'])
# The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git)
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = _get_rank_env()
args.world_size = _get_world_size_env() # int(os.environ['OMPI_COMM_WORLD_SIZE'])
args.gpu = _get_local_rank_env()
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['RANK'] = str(args.rank)
os.environ['WORLD_SIZE'] = str(args.world_size)
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu), flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank,
timeout=datetime.timedelta(0, 7200)
)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix=prefix)
warn_missing_keys = []
ignore_missing_keys = []
for key in missing_keys:
keep_flag = True
for ignore_key in ignore_missing.split('|'):
if ignore_key in key:
keep_flag = False
break
if keep_flag:
warn_missing_keys.append(key)
else:
ignore_missing_keys.append(key)
missing_keys = warn_missing_keys
if len(missing_keys) > 0:
print("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
print("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(ignore_missing_keys) > 0:
print("Ignored weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, ignore_missing_keys))
if len(error_msgs) > 0:
print('\n'.join(error_msgs))
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
start_warmup_value=0, warmup_steps=-1, sched_type="cos"):
warmup_schedule = np.array([])
warmup_iters = warmup_epochs * niter_per_ep
if warmup_steps > 0:
warmup_iters = warmup_steps
print("Set warmup steps = %d" % warmup_iters)
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
if sched_type == "cos":
iters = np.arange(epochs * niter_per_ep - warmup_iters)
schedule = np.array([
final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])
elif sched_type == "linear":
schedule = np.linspace(base_value, final_value, epochs * niter_per_ep - warmup_iters)
else:
raise NotImplementedError()
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
output_dir = Path(args.output_dir)
if loss_scaler is not None:
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch)]
for checkpoint_path in checkpoint_paths:
to_save = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}
if model_ema is not None:
to_save['model_ema'] = get_state_dict(model_ema)
save_on_master(to_save, checkpoint_path)
else:
client_state = {'epoch': epoch, "args": args}
if model_ema is not None:
client_state['model_ema'] = get_state_dict(model_ema)
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch, client_state=client_state)
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
output_dir = Path(args.output_dir)
if loss_scaler is not None:
# torch.amp
if args.auto_resume and len(args.resume) == 0:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if hasattr(args, 'model_ema') and args.model_ema:
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
else:
# deepspeed, only support '--auto_resume'.
if args.auto_resume:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt)
print("Auto resume checkpoint: %d" % latest_ckpt)
_, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt)
args.start_epoch = client_states['epoch'] + 1
if model_ema is not None:
if args.model_ema:
_load_checkpoint_for_ema(model_ema, client_states['model_ema'])
# The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git)
def load_model_and_may_interpolate(ckpt_path, model, model_key, model_prefix):
if ckpt_path.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
ckpt_path, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(ckpt_path, map_location='cpu')
print("Load ckpt from %s" % ckpt_path)
checkpoint_model = None
for model_key in model_key.split('|'):
if model_key in checkpoint:
checkpoint_model = checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
if checkpoint_model is None:
checkpoint_model = checkpoint
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
for pos_embed_key in ("vision_pos_embed", "pos_embed", "beit3.encoder.embed_positions.A.weight"):
if pos_embed_key in checkpoint_model:
pos_embed_checkpoint = checkpoint_model[pos_embed_key]
embedding_size = pos_embed_checkpoint.shape[-1]
if pos_embed_key == "beit3.encoder.embed_positions.A.weight":
# being consistent with Fairseq, which starts from 2 for position embedding
torchscale_model = True
num_patches = model.beit3.vision_embed.num_patches
num_extra_tokens = model.beit3.vision_embed.num_position_embeddings() + 2 - num_patches
else:
torchscale_model = False
num_patches = model.patch_embed.num_patches
num_extra_tokens = getattr(model, pos_embed_key).shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
# class_token and dist_token are kept unchanged
if orig_size != new_size:
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
if torchscale_model:
extra_tokens = pos_embed_checkpoint[:num_extra_tokens].unsqueeze(0)
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[num_extra_tokens:]
else:
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
if torchscale_model:
new_pos_embed = new_pos_embed.squeeze(0)
checkpoint_model[pos_embed_key] = new_pos_embed
load_state_dict(model, checkpoint_model, prefix=model_prefix)
def create_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": 1000,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
args.opt_betas[0],
args.opt_betas[1]
],
"eps": args.opt_eps
}
},
"fp16": {
"enabled": True,
"loss_scale": 0,
"initial_scale_power": getattr(args, "initial_scale_power", 12),
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"amp": {
"enabled": False,
"opt_level": "O2"
}
}
if args.clip_grad is not None:
ds_config.update({'gradient_clipping': args.clip_grad})
if args.zero_stage == 1:
ds_config.update({"zero_optimization": {"stage": args.zero_stage, "reduce_bucket_size": 5e8}})
elif args.zero_stage > 1:
raise NotImplementedError()
writer.write(json.dumps(ds_config, indent=2))
def merge_batch_tensors_by_dict_key(batch):
batch_tensors = {}
for tensor_key in batch[0]:
if isinstance(batch[0][tensor_key], torch.Tensor):
batch_tensors[tensor_key] = torch.stack([d[tensor_key] for d in batch])
else:
batch_tensors[tensor_key] = torch.tensor([d[tensor_key] for d in batch], dtype=torch.long)
return batch_tensors
def get_loss_scale_for_deepspeed(model):
optimizer = model.optimizer
loss_scale = None
if hasattr(optimizer, 'loss_scale'):
loss_scale = optimizer.loss_scale
elif hasattr(optimizer, 'cur_scale'):
loss_scale = optimizer.cur_scale
return loss_scale
class GatherLayer(torch.autograd.Function):
"""
Gather tensors from all workers with support for backward propagation:
This implementation does not cut the gradients as torch.distributed.all_gather does.
"""
@staticmethod
def forward(ctx, x):
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
dist.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
all_gradients = torch.stack(grads)
dist.all_reduce(all_gradients)
return all_gradients[dist.get_rank()]
def gather_features(
image_features,
text_features,
):
gathered_image_features = GatherLayer.apply(image_features)
gathered_text_features = GatherLayer.apply(text_features)
all_image_features = torch.cat(gathered_image_features)
all_text_features = torch.cat(gathered_text_features)
return all_image_features, all_text_features
# The implementation code is modified from open_clip (https://github.com/mlfoundations/open_clip.git)
class ClipLoss(nn.Module):
def __init__(
self,
cache_labels=False,
rank=0,
world_size=1,
):
super().__init__()
self.cache_labels = cache_labels
self.rank = rank
self.world_size = world_size
# cache state
self.prev_num_logits = 0
self.labels = {}
def forward(self, image_features, text_features, logit_scale):
device = image_features.device
if self.world_size > 1:
all_image_features, all_text_features = gather_features(
image_features, text_features
)
logits_per_image = logit_scale * image_features @ all_text_features.T
logits_per_text = logit_scale * text_features @ all_image_features.T
else:
logits_per_image = logit_scale * image_features @ text_features.T
logits_per_text = logit_scale * text_features @ image_features.T
# calculated ground-truth and cache if enabled
num_logits = logits_per_image.shape[0]
if self.prev_num_logits != num_logits or device not in self.labels:
labels = torch.arange(num_logits, device=device, dtype=torch.long)
if self.world_size > 1:
labels = labels + num_logits * self.rank
if self.cache_labels:
self.labels[device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[device]
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
return total_loss, logits_per_image, logits_per_text
def write_result_to_jsonl(test_stats, result_file):
with open(result_file, mode="w", encoding="utf-8") as writer:
writer.write(json.dumps(test_stats, indent=None))
def read_result_from_jsonl(result_file):
with open(result_file, mode="r", encoding="utf-8") as reader:
return json.load(reader)
# The implementation code is from ViLT (https://github.com/dandelin/ViLT.git)
class VQAScore(Metric):
def __init__(self, dist_sync_on_step=False):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.add_state("score", default=torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0.0), dist_reduce_fx="sum")
def update(self, logits, target):
logits, target = (
logits.detach().float().to(self.score.device),
target.detach().float().to(self.score.device),
)
logits = torch.max(logits, 1)[1]
one_hots = torch.zeros(*target.size()).to(target)
one_hots.scatter_(1, logits.view(-1, 1), 1)
scores = one_hots * target
self.score += scores.sum()
self.total += len(logits)
def compute(self):
return self.score / self.total
class BertCaptioningLoss(nn.Module):
def __init__(self, label_smoothing, drop_worst_ratio, drop_worst_after):
super().__init__()
self.label_smoothing = label_smoothing
self.drop_worst_ratio = drop_worst_ratio
self.drop_worst_after = drop_worst_after
self.log_soft = nn.LogSoftmax(dim=1)
self.kl = nn.KLDivLoss(reduction='none')
self.iter = 0
def forward(self, logits, target, iter):
eps = self.label_smoothing
n_class = logits.size(1)
one_hot = torch.zeros_like(logits).scatter(1, target.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = self.log_soft(logits)
loss = self.kl(log_prb, one_hot).sum(1)
if self.drop_worst_ratio > 0 and iter > self.drop_worst_after:
loss, _ = torch.topk(loss,
k=int(loss.shape[0] * (1-self.drop_worst_ratio)),
largest=False)
loss = loss.mean()
return loss
class BeamHypotheses(object):
def __init__(self, n_hyp, max_length, length_penalty, early_stopping):
"""
Initialize n-best list of hypotheses.
"""
self.max_length = max_length - 1 # ignoring bos_token
self.length_penalty = length_penalty
self.early_stopping = early_stopping
self.n_hyp = n_hyp
self.hyp = []
self.worst_score = 1e9
def __len__(self):
"""
Number of hypotheses in the list.
"""
return len(self.hyp)
def add(self, hyp, sum_logprobs):
"""
Add a new hypothesis to the list.
"""
score = sum_logprobs / len(hyp) ** self.length_penalty
if len(self) < self.n_hyp or score > self.worst_score:
self.hyp.append((score, hyp))
if len(self) > self.n_hyp:
sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)])
del self.hyp[sorted_scores[0][1]]
self.worst_score = sorted_scores[1][0]
else:
self.worst_score = min(score, self.worst_score)
def is_done(self, best_sum_logprobs):
"""
If there are enough hypotheses and that none of the hypotheses being generated
can become better than the worst one in the heap, then we are done with this sentence.
"""
if len(self) < self.n_hyp:
return False
elif self.early_stopping:
return True
else:
return self.worst_score >= best_sum_logprobs / self.max_length ** self.length_penalty
def dump_predictions(args, result, file_suffix):
global_rank = get_rank()
jsons = None
if global_rank >= 0:
output_file = os.path.join(args.task_cache_path, f"submit_{global_rank}_{file_suffix}.json")
with open(output_file, "w") as fp:
json.dump(result, fp, indent=2)
torch.distributed.barrier()
if global_rank == 0:
world_size = get_world_size()
jsons = []
for i in range(world_size):
each_file = os.path.join(args.task_cache_path, f"submit_{i}_{file_suffix}.json")
with open(each_file, "r") as fp:
jsons += json.load(fp)
new_jsons = []
res_dict = dict()
if args.task in ["coco_captioning", "nocaps"]:
qid_key = "image_id"
else:
# for VQAv2
qid_key = "question_id"
for item in jsons:
if item[qid_key] in res_dict:
continue
new_jsons.append(item)
res_dict[item[qid_key]] = item
jsons = new_jsons
torch.distributed.barrier()
os.remove(output_file)
else:
jsons = result
result_file = os.path.join(args.output_dir, f"submit_{file_suffix}.json")
if jsons is not None:
with open(result_file, "w") as fp:
json.dump(jsons, fp, indent=2)
print("Infer %d examples into %s" % (len(jsons), result_file))
return result_file
# The evaluation code is from BLIP (https://github.com/salesforce/BLIP)
# For nocaps, please submit the prediction file to the evaluate server (https://eval.ai/web/challenges/challenge-page/355/overview) to obtain the final results
def coco_caption_eval(gt_dir, results_file, split):
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap
from torchvision.datasets.utils import download_url
urls = {'coco_captioning_val': 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json',
'coco_captioning_test': 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json',
'nocaps_val': 'https://github.com/addf400/files/releases/download/beit3/nocaps_val_gt.json'}
filenames = {'coco_captioning_val':'coco_karpathy_val_gt.json',
'coco_captioning_test':'coco_karpathy_test_gt.json',
'nocaps_val':'nocaps_val_gt.json'}
download_url(urls[split], gt_dir)
annotation_file = os.path.join(gt_dir, filenames[split])
# create coco object and coco_result object
coco = COCO(annotation_file)
coco_result = coco.loadRes(results_file)
# create coco_eval object by taking coco and coco_result
coco_eval = COCOEvalCap(coco, coco_result)
# evaluate results
# SPICE will take a few minutes the first time, but speeds up due to caching
coco_eval.evaluate()
res_dict = dict()
for metric, score in coco_eval.eval.items():
res_dict[metric] = score
return res_dict