evf-sam2 / model /unilm /beit3 /optim_factory.py
wondervictor's picture
add app
a93afca
raw
history blame
4.5 kB
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'
from torch import optim as optim
from timm.optim.lookahead import Lookahead
import json
def get_num_layer_for_vit(var_name, num_max_layer):
if "embed" in var_name:
return 0
elif var_name in (
"cls_token", "mask_token", "pos_embed", "language_pos_embed",
"word_embeddings.weight", "vision_cls_token", "vision_pos_embed"
):
return 0
elif var_name.startswith("patch_embed"):
return 0
elif var_name.startswith("rel_pos_bias"):
return num_max_layer - 1
elif "layers." in var_name:
layer_id = int(var_name.split('layers.')[1].split('.')[0])
return layer_id + 1
else:
return num_max_layer - 1
def get_is_head_flag_for_vit(var_name, num_max_layer):
if var_name.startswith("head"):
return 1
# elif var_name.startswith("pooler"):
# return 1
else:
return 0
class LayerDecayValueAssigner(object):
def __init__(self, values, scale_handler=None):
self.scale_handler = scale_handler or get_num_layer_for_vit
self.values = values
def get_scale(self, layer_id):
return self.values[layer_id]
def get_layer_id(self, var_name):
return self.scale_handler(var_name, len(self.values))
# The implementation code is modified from Timm (https://github.com/huggingface/pytorch-image-models/tree/main/timm
def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None):
parameter_group_names = {}
parameter_group_vars = {}
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
group_name = "no_decay"
this_weight_decay = 0.
else:
group_name = "decay"
this_weight_decay = weight_decay
if get_num_layer is not None:
layer_id = get_num_layer(name)
group_name = "layer_%d_%s" % (layer_id, group_name)
else:
layer_id = None
if group_name not in parameter_group_names:
if get_layer_scale is not None:
scale = get_layer_scale(layer_id)
else:
scale = 1.
parameter_group_names[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name]["params"].append(param)
parameter_group_names[group_name]["params"].append(name)
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
return list(parameter_group_vars.values())
def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None):
opt_lower = args.opt.lower()
weight_decay = args.weight_decay
if weight_decay and filter_bias_and_bn:
skip = {}
if skip_list is not None:
skip = skip_list
elif hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale)
weight_decay = 0.
else:
parameters = model.parameters()
opt_args = dict(lr=args.lr, weight_decay=weight_decay)
if hasattr(args, 'opt_eps') and args.opt_eps is not None:
opt_args['eps'] = args.opt_eps
if hasattr(args, 'opt_betas') and args.opt_betas is not None:
opt_args['betas'] = args.opt_betas
opt_split = opt_lower.split('_')
opt_lower = opt_split[-1]
if opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, **opt_args)
else:
raise ValueError("Invalid optimizer")
if len(opt_split) > 1:
if opt_split[0] == 'lookahead':
optimizer = Lookahead(optimizer)
return optimizer