Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit3 | |
# Copyright (c) 2023 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# --------------------------------------------------------' | |
from torch import optim as optim | |
from timm.optim.lookahead import Lookahead | |
import json | |
def get_num_layer_for_vit(var_name, num_max_layer): | |
if "embed" in var_name: | |
return 0 | |
elif var_name in ( | |
"cls_token", "mask_token", "pos_embed", "language_pos_embed", | |
"word_embeddings.weight", "vision_cls_token", "vision_pos_embed" | |
): | |
return 0 | |
elif var_name.startswith("patch_embed"): | |
return 0 | |
elif var_name.startswith("rel_pos_bias"): | |
return num_max_layer - 1 | |
elif "layers." in var_name: | |
layer_id = int(var_name.split('layers.')[1].split('.')[0]) | |
return layer_id + 1 | |
else: | |
return num_max_layer - 1 | |
def get_is_head_flag_for_vit(var_name, num_max_layer): | |
if var_name.startswith("head"): | |
return 1 | |
# elif var_name.startswith("pooler"): | |
# return 1 | |
else: | |
return 0 | |
class LayerDecayValueAssigner(object): | |
def __init__(self, values, scale_handler=None): | |
self.scale_handler = scale_handler or get_num_layer_for_vit | |
self.values = values | |
def get_scale(self, layer_id): | |
return self.values[layer_id] | |
def get_layer_id(self, var_name): | |
return self.scale_handler(var_name, len(self.values)) | |
# The implementation code is modified from Timm (https://github.com/huggingface/pytorch-image-models/tree/main/timm | |
def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None): | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: | |
group_name = "no_decay" | |
this_weight_decay = 0. | |
else: | |
group_name = "decay" | |
this_weight_decay = weight_decay | |
if get_num_layer is not None: | |
layer_id = get_num_layer(name) | |
group_name = "layer_%d_%s" % (layer_id, group_name) | |
else: | |
layer_id = None | |
if group_name not in parameter_group_names: | |
if get_layer_scale is not None: | |
scale = get_layer_scale(layer_id) | |
else: | |
scale = 1. | |
parameter_group_names[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale | |
} | |
parameter_group_vars[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale | |
} | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
return list(parameter_group_vars.values()) | |
def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): | |
opt_lower = args.opt.lower() | |
weight_decay = args.weight_decay | |
if weight_decay and filter_bias_and_bn: | |
skip = {} | |
if skip_list is not None: | |
skip = skip_list | |
elif hasattr(model, 'no_weight_decay'): | |
skip = model.no_weight_decay() | |
parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale) | |
weight_decay = 0. | |
else: | |
parameters = model.parameters() | |
opt_args = dict(lr=args.lr, weight_decay=weight_decay) | |
if hasattr(args, 'opt_eps') and args.opt_eps is not None: | |
opt_args['eps'] = args.opt_eps | |
if hasattr(args, 'opt_betas') and args.opt_betas is not None: | |
opt_args['betas'] = args.opt_betas | |
opt_split = opt_lower.split('_') | |
opt_lower = opt_split[-1] | |
if opt_lower == 'adamw': | |
optimizer = optim.AdamW(parameters, **opt_args) | |
else: | |
raise ValueError("Invalid optimizer") | |
if len(opt_split) > 1: | |
if opt_split[0] == 'lookahead': | |
optimizer = Lookahead(optimizer) | |
return optimizer | |