Spaces:
Runtime error
Runtime error
import glob | |
import json | |
import os | |
import random | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
from pycocotools.coco import COCO | |
from model.segment_anything.utils.transforms import ResizeLongestSide | |
from torchvision import transforms | |
def init_mapillary(base_image_dir): | |
mapillary_data_root = os.path.join(base_image_dir, "mapillary") | |
with open(os.path.join(mapillary_data_root, "config_v2.0.json")) as f: | |
mapillary_classes = json.load(f)["labels"] | |
mapillary_classes = [x["readable"].lower() for x in mapillary_classes] | |
mapillary_classes = np.array(mapillary_classes) | |
mapillary_labels = sorted( | |
glob.glob( | |
os.path.join(mapillary_data_root, "training", "v2.0", "labels", "*.png") | |
) | |
) | |
mapillary_images = [ | |
x.replace(".png", ".jpg").replace("v2.0/labels", "images") | |
for x in mapillary_labels | |
] | |
print("mapillary: ", len(mapillary_images)) | |
return mapillary_classes, mapillary_images, mapillary_labels | |
def init_ade20k(base_image_dir): | |
with open("utils/ade20k_classes.json", "r") as f: | |
ade20k_classes = json.load(f) | |
ade20k_classes = np.array(ade20k_classes) | |
image_ids = sorted( | |
os.listdir(os.path.join(base_image_dir, "ade20k/images", "training")) | |
) | |
ade20k_image_ids = [] | |
for x in image_ids: | |
if x.endswith(".jpg"): | |
ade20k_image_ids.append(x[:-4]) | |
ade20k_images = [] | |
for image_id in ade20k_image_ids: # self.descriptions: | |
ade20k_images.append( | |
os.path.join( | |
base_image_dir, | |
"ade20k", | |
"images", | |
"training", | |
"{}.jpg".format(image_id), | |
) | |
) | |
ade20k_labels = [ | |
x.replace(".jpg", ".png").replace("images", "annotations") | |
for x in ade20k_images | |
] | |
print("ade20k: ", len(ade20k_images)) | |
return ade20k_classes, ade20k_images, ade20k_labels | |
def init_paco_lvis(base_image_dir): | |
coco_api_paco_lvis = COCO( | |
os.path.join( | |
base_image_dir, "vlpart", "paco", "annotations", "paco_lvis_v1_train.json" | |
) | |
) | |
all_classes = coco_api_paco_lvis.loadCats(coco_api_paco_lvis.getCatIds()) | |
class_map_paco_lvis = {} | |
for cat in all_classes: | |
cat_split = cat["name"].strip().split(":") | |
if len(cat_split) == 1: | |
name = cat_split[0].split("_(")[0] | |
else: | |
assert len(cat_split) == 2 | |
obj, part = cat_split | |
obj = obj.split("_(")[0] | |
part = part.split("_(")[0] | |
name = (obj, part) | |
class_map_paco_lvis[cat["id"]] = name | |
img_ids = coco_api_paco_lvis.getImgIds() | |
print("paco_lvis: ", len(img_ids)) | |
return class_map_paco_lvis, img_ids, coco_api_paco_lvis | |
def init_pascal_part(base_image_dir): | |
coco_api_pascal_part = COCO( | |
os.path.join(base_image_dir, "vlpart", "pascal_part", "train.json") | |
) | |
all_classes = coco_api_pascal_part.loadCats(coco_api_pascal_part.getCatIds()) | |
class_map_pascal_part = {} | |
for cat in all_classes: | |
cat_main, cat_part = cat["name"].strip().split(":") | |
name = (cat_main, cat_part) | |
class_map_pascal_part[cat["id"]] = name | |
img_ids = coco_api_pascal_part.getImgIds() | |
print("pascal_part: ", len(img_ids)) | |
return class_map_pascal_part, img_ids, coco_api_pascal_part | |
class SemSegDataset(torch.utils.data.Dataset): | |
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
img_size = 1024 | |
ignore_label = 255 | |
def __init__( | |
self, | |
base_image_dir, | |
tokenizer, | |
samples_per_epoch=500 * 8 * 2 * 10, | |
precision: str = "fp32", | |
image_size: int = 224, | |
num_classes_per_sample: int = 3, | |
exclude_val=False, | |
sem_seg_data="ade20k||pascal_part||mapillary", | |
model_type="ori", | |
transform=ResizeLongestSide(1024), | |
): | |
self.model_type = model_type | |
self.exclude_val = exclude_val | |
self.samples_per_epoch = samples_per_epoch | |
self.num_classes_per_sample = num_classes_per_sample | |
self.base_image_dir = base_image_dir | |
self.tokenizer = tokenizer | |
self.precision = precision | |
self.transform = transform | |
self.image_preprocessor = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((image_size, image_size), interpolation=3), | |
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) | |
]) | |
self.data2list = {} | |
self.data2classes = {} | |
self.sem_seg_datas = sem_seg_data.split("||") | |
for ds in self.sem_seg_datas: | |
classes, images, labels = eval("init_{}".format(ds))(base_image_dir) | |
self.data2list[ds] = (images, labels) | |
self.data2classes[ds] = classes | |
def __len__(self): | |
return self.samples_per_epoch | |
def preprocess(self, x: torch.Tensor) -> torch.Tensor: | |
"""Normalize pixel values and pad to a square input.""" | |
if self.model_type=="hq": | |
h, w = x.shape[-2:] | |
padh = self.img_size - h | |
padw = self.img_size - w | |
x = F.pad(x, (0, padw, 0, padh), value=128) | |
# Normalize colors | |
x = (x - self.pixel_mean) / self.pixel_std | |
if self.model_type=="effi": | |
x = F.interpolate(x.unsqueeze(0), (self.img_size, self.img_size), mode="bilinear").squeeze(0) | |
else: | |
# Pad | |
h, w = x.shape[-2:] | |
padh = self.img_size - h | |
padw = self.img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
return x | |
def __getitem__(self, idx): | |
ds = random.randint(0, len(self.sem_seg_datas) - 1) | |
ds = self.sem_seg_datas[ds] | |
if ds in ["pascal_part"]: | |
class_map = self.data2classes[ds] | |
img_ids, coco_api = self.data2list[ds] | |
idx = random.randint(0, len(img_ids) - 1) | |
img_id = img_ids[idx] | |
image_info = coco_api.loadImgs([img_id])[0] | |
file_name = image_info["file_name"] | |
file_name = os.path.join( | |
"VOCdevkit", "VOC2010", "JPEGImages", file_name | |
) | |
image_path = os.path.join(self.base_image_dir, "vlpart", ds, file_name) | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# preprocess image for evf | |
image_evf = self.image_preprocessor(image) | |
image = self.transform.apply_image(image) # preprocess image for sam | |
resize = image.shape[:2] | |
annIds = coco_api.getAnnIds(imgIds=image_info["id"]) | |
anns = coco_api.loadAnns(annIds) | |
if len(anns) == 0: | |
return self.__getitem__(0) | |
if len(anns) >= self.num_classes_per_sample: | |
sampled_anns = np.random.choice( | |
anns, size=self.num_classes_per_sample, replace=False | |
).tolist() | |
else: | |
sampled_anns = anns | |
sampled_classes = [] | |
for ann in sampled_anns: | |
sampled_cls = class_map[ann["category_id"]] | |
if isinstance(sampled_cls, tuple): | |
obj, part = sampled_cls | |
if random.random() < 0.5: | |
name = obj + " " + part | |
else: | |
name = "the {} of the {}".format(part, obj) | |
else: | |
name = sampled_cls | |
sampled_classes.append(name) | |
elif ds in ["ade20k", "mapillary"]: | |
image, labels = self.data2list[ds] | |
idx = random.randint(0, len(image) - 1) | |
image_path = image[idx] | |
label_path = labels[idx] | |
label = Image.open(label_path) | |
label = np.array(label) | |
if ds == "ade20k": | |
label[label == 0] = 255 | |
label -= 1 | |
label[label == 254] = 255 | |
img = cv2.imread(image_path) | |
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
# preprocess image for evf | |
image_evf = self.image_preprocessor(image) | |
image = self.transform.apply_image(image) # preprocess image for sam | |
resize = image.shape[:2] | |
unique_label = np.unique(label).tolist() | |
if 255 in unique_label: | |
unique_label.remove(255) | |
if len(unique_label) == 0: | |
return self.__getitem__(0) | |
classes = [self.data2classes[ds][class_id] for class_id in unique_label] | |
if len(classes) >= self.num_classes_per_sample: | |
sampled_classes = np.random.choice( | |
classes, size=self.num_classes_per_sample, replace=False | |
).tolist() | |
else: | |
sampled_classes = classes | |
class_ids = [] | |
for sampled_cls in sampled_classes: | |
assert len(sampled_cls.split("||")) == 1 | |
if ds in ["paco_lvis", "pascal_part"]: | |
continue | |
class_id = self.data2classes[ds].tolist().index(sampled_cls) | |
class_ids.append(class_id) | |
image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) | |
if ds in ["pascal_part"]: | |
masks = [] | |
for ann in sampled_anns: | |
try: | |
masks.append(coco_api.annToMask(ann)) | |
except Exception as e: | |
print(e) | |
return self.__getitem__(0) | |
masks = np.stack(masks, axis=0) | |
masks = torch.from_numpy(masks) | |
label = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label | |
else: | |
label = torch.from_numpy(label).long() | |
masks = [] | |
for class_id in class_ids: | |
masks.append(label == class_id) | |
masks = torch.stack(masks, dim=0) | |
# sampled_classes = ["all "+_ for _ in sampled_classes] | |
return ( | |
image_path, | |
image, | |
image_evf, | |
masks, | |
label, | |
resize, | |
sampled_classes, | |
) | |