evf-sam2 / model /unilm /beit3 /engine_for_finetuning.py
wondervictor's picture
add app
a93afca
raw
history blame
25.6 kB
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'
import math
import sys
import json
from typing import Iterable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.utils import ModelEma
from timm.utils import accuracy, ModelEma
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from datasets import get_sentencepiece_model_for_beit3
import utils
class TaskHandler(object):
def __init__(self) -> None:
self.metric_logger = None
self.split = None
def train_batch(self, model, **kwargs):
raise NotImplementedError()
def eval_batch(self, model, **kwargs):
raise NotImplementedError()
def before_eval(self, metric_logger, data_loader, **kwargs):
self.metric_logger = metric_logger
self.split = data_loader.dataset.split
def after_eval(self, **kwargs):
raise NotImplementedError()
class NLVR2Handler(TaskHandler):
def __init__(self) -> None:
super().__init__()
self.criterion = torch.nn.CrossEntropyLoss()
def train_batch(self, model, image, image2, language_tokens, padding_mask, label):
logits = model(
image_a=image, image_b=image2,
text_description=language_tokens,
padding_mask=padding_mask)
acc = (logits.max(-1)[-1] == label).float().mean()
return {
"loss": self.criterion(input=logits, target=label),
"acc": acc,
}
def eval_batch(self, model, image, image2, language_tokens, padding_mask, label):
logits = model(
image_a=image, image_b=image2,
text_description=language_tokens,
padding_mask=padding_mask)
batch_size = language_tokens.shape[0]
acc = (logits.max(-1)[-1] == label).float().sum(0) * 100.0 / batch_size
self.metric_logger.meters['acc'].update(acc.item(), n=batch_size)
def after_eval(self, **kwargs):
print('* Acc {acc.global_avg:.3f}'.format(acc=self.metric_logger.acc))
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc"
class ImageNetHandler(TaskHandler):
def __init__(self, args) -> None:
super().__init__()
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
# smoothing is handled with mixup label transform
self.criterion = SoftTargetCrossEntropy()
elif args.label_smoothing > 0.:
self.criterion = LabelSmoothingCrossEntropy(smoothing=args.label_smoothing)
else:
self.criterion = torch.nn.CrossEntropyLoss()
def train_batch(self, model, image, label):
logits = model(image=image)
return {
"loss": self.criterion(logits, label),
}
def eval_batch(self, model, image, label):
logits = model(image=image)
batch_size = image.shape[0]
acc1, acc5 = accuracy(logits, label, topk=(1, 5))
self.metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
self.metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
def after_eval(self, **kwargs):
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
.format(top1=self.metric_logger.acc1, top5=self.metric_logger.acc5))
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc1"
class RetrievalHandler(TaskHandler):
def __init__(self) -> None:
super().__init__()
self.image_feats = []
self.text_feats = []
self.image_ids = []
self.metric_logger = None
def train_batch(self, model, image, language_tokens, padding_mask, image_id):
loss, vision_cls, language_cls = model(
image=image, text_description=language_tokens, padding_mask=padding_mask)
return {
"loss": loss,
}
def before_eval(self, metric_logger, **kwargs):
self.image_feats.clear()
self.text_feats.clear()
self.image_ids.clear()
self.metric_logger = metric_logger
def eval_batch(self, model, image, language_tokens, padding_mask, image_id):
vision_cls, _ = model(image=image, only_infer=True)
_, language_cls = model(
text_description=language_tokens, padding_mask=padding_mask, only_infer=True)
self.image_feats.append(vision_cls.clone())
self.text_feats.append(language_cls.clone())
self.image_ids.append(image_id.clone())
def after_eval(self, **kwargs):
image_feats = {}
for feats, ids in zip(self.image_feats, self.image_ids):
for i, _idx in enumerate(ids):
idx = _idx.item()
if idx not in image_feats:
image_feats[idx] = feats[i]
tiids = torch.cat(self.image_ids, dim=0)
iids = []
sorted_tensors = []
for key in sorted(image_feats.keys()):
sorted_tensors.append(image_feats[key].view(1, -1))
iids.append(key)
image_cls_feats = torch.cat(sorted_tensors, dim=0)
text_cls_feats = torch.cat(self.text_feats, dim=0)
scores = image_cls_feats @ text_cls_feats.t()
iids = torch.LongTensor(iids).to(scores.device)
print("scores: {}".format(scores.size()))
print("iids: {}".format(iids.size()))
print("tiids: {}".format(tiids.size()))
topk10 = scores.topk(10, dim=1)
topk5 = scores.topk(5, dim=1)
topk1 = scores.topk(1, dim=1)
topk10_iids = tiids[topk10.indices]
topk5_iids = tiids[topk5.indices]
topk1_iids = tiids[topk1.indices]
tr_r10 = (iids.unsqueeze(1) == topk10_iids).float().max(dim=1)[0].mean()
tr_r5 = (iids.unsqueeze(1) == topk5_iids).float().max(dim=1)[0].mean()
tr_r1 = (iids.unsqueeze(1) == topk1_iids).float().max(dim=1)[0].mean()
topk10 = scores.topk(10, dim=0)
topk5 = scores.topk(5, dim=0)
topk1 = scores.topk(1, dim=0)
topk10_iids = iids[topk10.indices]
topk5_iids = iids[topk5.indices]
topk1_iids = iids[topk1.indices]
ir_r10 = (tiids.unsqueeze(0) == topk10_iids).float().max(dim=0)[0].mean()
ir_r5 = (tiids.unsqueeze(0) == topk5_iids).float().max(dim=0)[0].mean()
ir_r1 = (tiids.unsqueeze(0) == topk1_iids).float().max(dim=0)[0].mean()
eval_result = {
"tr_r10": tr_r10.item() * 100.0,
"tr_r5": tr_r5.item() * 100.0,
"tr_r1": tr_r1.item() * 100.0,
"ir_r10": ir_r10.item() * 100.0,
"ir_r5": ir_r5.item() * 100.0,
"ir_r1": ir_r1.item() * 100.0,
"average_score": 100.0 * (tr_r1 + tr_r5 + tr_r10 + ir_r1 + ir_r5 + ir_r10).item() / 6.0,
}
print('* Eval result = %s' % json.dumps(eval_result))
return eval_result, "average_score"
class VQAHandler(TaskHandler):
def __init__(self) -> None:
super().__init__()
self.predictions = []
self.criterion = nn.BCEWithLogitsLoss(reduction='mean')
self.label2ans = None
def train_batch(self, model, image, language_tokens, padding_mask, labels):
logits = model(
image=image, question=language_tokens,
padding_mask=padding_mask)
return {
"loss": self.criterion(input=logits.float(), target=labels.float()) * labels.shape[1],
}
def before_eval(self, metric_logger, data_loader, **kwargs):
self.predictions.clear()
self.metric_logger = metric_logger
self.label2ans = data_loader.dataset.label2ans
def eval_batch(self, model, image, language_tokens, padding_mask, labels=None, qid=None):
logits = model(
image=image, question=language_tokens,
padding_mask=padding_mask)
batch_size = language_tokens.shape[0]
if labels is not None:
scores = utils.VQAScore()(logits, labels) * 100.0
self.metric_logger.meters['score'].update(scores.item(), n=batch_size)
else:
_, preds = logits.max(-1)
for image_id, pred in zip(qid, preds):
self.predictions.append({
"question_id": image_id.item(),
"answer": self.label2ans[pred.item()],
})
def after_eval(self, **kwargs):
if len(self.predictions) == 0:
print('* Score {score.global_avg:.3f}'.format(score=self.metric_logger.score))
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "score"
else:
return self.predictions, "prediction"
class CaptioningHandler(TaskHandler):
def __init__(self, args) -> None:
super().__init__()
self.predictions = []
self.criterion = utils.BertCaptioningLoss(args.label_smoothing, args.drop_worst_ratio, args.drop_worst_after)
self.tokenizer = get_sentencepiece_model_for_beit3(args)
self.num_beams = args.num_beams
self.max_len = args.num_max_bpe_tokens
self.length_penalty = args.length_penalty
self.vocab_size = args.vocab_size
def train_batch(self, model, image, language_tokens, masked_tokens, language_masked_pos, padding_mask, image_id, global_step):
logits, _ = model(
image=image, text_ids=masked_tokens, padding_mask=padding_mask, language_masked_pos=language_masked_pos, image_id=image_id)
masked_labels = language_tokens[language_masked_pos.bool()]
score = torch.max(logits, -1)[1].data == masked_labels
acc = torch.sum(score.float()) / torch.sum(language_masked_pos)
return {
"loss": self.criterion(logits, masked_labels, global_step),
"acc": acc
}
def before_eval(self, metric_logger, data_loader, **kwargs):
self.predictions.clear()
self.metric_logger = metric_logger
def eval_batch(self, model, image, image_id=None):
cur_len = 2
num_keep_best = 1
TOPN_PER_BEAM = 3
batch_size = image.size(0)
mask_id = self.tokenizer.mask_token_id
cls_id = self.tokenizer.cls_token_id
pad_id = self.tokenizer.pad_token_id
sep_id = self.tokenizer.sep_token_id
eos_token_ids = [sep_id]
cls_ids = torch.full(
(batch_size, 1), cls_id, dtype=torch.long, device=image.device
)
mask_ids = torch.full(
(batch_size, 1), mask_id, dtype=torch.long, device=image.device
)
cur_input_ids = torch.cat([cls_ids, mask_ids], dim=1)
tmp_ids = torch.full(
(batch_size, self.max_len-1), mask_id, dtype=torch.long, device=image.device
)
decoding_results = torch.cat([cls_ids, tmp_ids], dim=1)
# Expand input to num beams
cur_input_ids = cur_input_ids.unsqueeze(1).expand(batch_size, self.num_beams, cur_len)
cur_input_ids = cur_input_ids.contiguous().view(batch_size * self.num_beams, cur_len) # (batch_size * num_beams, cur_len)
decoding_results = decoding_results.unsqueeze(1).expand(batch_size, self.num_beams, self.max_len)
decoding_results = decoding_results.contiguous().view(batch_size * self.num_beams, self.max_len) # (batch_size * num_beams, cur_len)
image = image.unsqueeze(1).expand(batch_size, self.num_beams, image.size(-3), image.size(-2), image.size(-1))
image = image.contiguous().view(batch_size * self.num_beams, image.size(-3), image.size(-2), image.size(-1))
generated_hyps = [
utils.BeamHypotheses(
num_keep_best, self.max_len, length_penalty=self.length_penalty, early_stopping=False
) for _ in range(batch_size)
]
# scores for each sentence in the beam
beam_scores = torch.zeros((batch_size, self.num_beams), dtype=torch.float, device=cur_input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,)
# done sentences
done = [False for _ in range(batch_size)]
incremental_state = {}
while cur_len <= self.max_len:
next_token_idx = 1
padding_masks = torch.full(
cur_input_ids.shape, 0, dtype=torch.long, device=image.device
)
input_image = image
if cur_len != 2:
input_image = None
outputs, incremental_state_next = model(
image=input_image, text_ids=cur_input_ids, language_masked_pos=None,
padding_mask=padding_masks, text_len=cur_len, incremental_state=incremental_state)
incremental_state = incremental_state_next
# assert outputs.shape[1] == token_len
scores = outputs[:, next_token_idx, :] # (batch_size * num_beams, vocab_size)
scores = F.log_softmax(scores, dim=-1) # (batch_size * num_beams, vocab_size)
assert scores.size() == (batch_size * self.num_beams, self.vocab_size)
# Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product)
_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size)
# re-organize to group the beam together (we are keeping top hypothesis accross beams)
_scores = _scores.view(batch_size, self.num_beams * self.vocab_size) # (batch_size, num_beams * vocab_size)
next_scores, next_words = torch.topk(_scores, TOPN_PER_BEAM * self.num_beams, dim=1, largest=True, sorted=True)
assert next_scores.size() == next_words.size() == (batch_size, TOPN_PER_BEAM * self.num_beams)
# next batch beam content
# list of (batch_size * num_beams) tuple(next hypothesis score, next word, current position in the batch)
next_batch_beam = []
# for each sentence
for batch_ex in range(batch_size):
# if we are done with this sentence
done[batch_ex] = done[batch_ex] or generated_hyps[batch_ex].is_done(next_scores[batch_ex].max().item())
if done[batch_ex]:
next_batch_beam.extend([(0, pad_id, 0)] * self.num_beams) # pad the batch
continue
# next sentence beam content
next_sent_beam = []
for idx, score in zip(next_words[batch_ex], next_scores[batch_ex]):
# get beam and word IDs
beam_id = idx // self.vocab_size
word_id = idx % self.vocab_size
# end of sentence, or next word
# if word_id.item() in eos_token_ids or cur_len + 1 == max_len:
if (word_id.item() in eos_token_ids and cur_len + 1 <= self.max_len) or (cur_len + 1 == self.max_len):
generated_hyps[batch_ex].add(
decoding_results[batch_ex * self.num_beams + beam_id, :cur_len].clone(), score.item()
)
else:
next_sent_beam.append((score, word_id, batch_ex * self.num_beams + beam_id))
# the beam for next step is full
if len(next_sent_beam) == self.num_beams:
break
# update next beam content
if cur_len + 1 == self.max_len:
assert len(next_sent_beam) == 0
else:
assert len(next_sent_beam) == self.num_beams
if len(next_sent_beam) == 0:
next_sent_beam = [(0, pad_id, 0)] * self.num_beams # pad the batch
next_batch_beam.extend(next_sent_beam)
assert len(next_batch_beam) == self.num_beams * (batch_ex + 1)
# sanity check / prepare next batch
assert len(next_batch_beam) == batch_size * self.num_beams
beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
beam_words = cur_input_ids.new([x[1] for x in next_batch_beam])
beam_idx = cur_input_ids.new([x[2] for x in next_batch_beam])
# re-order batch
cur_input_ids = cur_input_ids[beam_idx, :]
decoding_results = decoding_results[beam_idx, :]
for module in incremental_state:
for key in incremental_state[module]:
result = incremental_state[module][key].index_select(0, beam_idx)
incremental_state[module][key] = result[:,:,:-1,:]
next_ids = torch.full(
(batch_size * self.num_beams, 1), mask_id, dtype=torch.long, device=image.device
)
cur_input_ids = torch.cat([beam_words.unsqueeze(1), next_ids], dim=1)
decoding_results[:, cur_len-1] = beam_words
# update current length
cur_len = cur_len + 1
# stop when we are done with each sentence
if all(done):
break
# select the best hypotheses
tgt_len = torch.ones(batch_size, num_keep_best, dtype=torch.long)
logprobs = torch.zeros(batch_size, num_keep_best,
dtype=torch.float).fill_(-1e5).to(cur_input_ids.device)
all_best = []
for i, hypotheses in enumerate(generated_hyps):
best = []
hyp_scores = torch.tensor([x[0] for x in hypotheses.hyp])
_, best_indices = torch.topk(hyp_scores,
min(num_keep_best, len(hyp_scores)), largest=True)
for best_idx, hyp_idx in enumerate(best_indices):
conf, best_hyp = hypotheses.hyp[hyp_idx]
best.append(best_hyp)
logprobs[i, best_idx] = conf
tgt_len[i, best_idx] = len(best_hyp) + 1 # +1 for the <EOS> symbol
all_best.append(best)
# generate target batch, pad to the same length
decoded = cur_input_ids.new(batch_size, num_keep_best, self.max_len).fill_(pad_id)
for batch_idx, best in enumerate(all_best):
for best_idx, hypo in enumerate(best):
decoded[batch_idx, best_idx, : tgt_len[batch_idx, best_idx] - 1] = hypo
decoded[batch_idx, best_idx, tgt_len[batch_idx, best_idx] - 1] = eos_token_ids[0]
captions = self.tokenizer.batch_decode(decoded.squeeze(1), skip_special_tokens=True)
for qid, pred in zip(image_id, captions):
self.predictions.append({
"image_id": qid.item(),
"caption": pred,
})
def after_eval(self, **kwargs):
return self.predictions, "prediction"
def get_handler(args):
if args.task == "nlvr2":
return NLVR2Handler()
elif args.task == "vqav2":
return VQAHandler()
elif args.task in ("flickr30k", "coco_retrieval"):
return RetrievalHandler()
elif args.task in ("coco_captioning", "nocaps"):
return CaptioningHandler(args)
elif args.task in ("imagenet"):
return ImageNetHandler(args)
else:
raise NotImplementedError("Sorry, %s is not support." % args.task)
def train_one_epoch(
model: torch.nn.Module, data_loader: Iterable,
optimizer: torch.optim.Optimizer, device: torch.device,
handler: TaskHandler, epoch: int, start_steps: int,
lr_schedule_values: list, loss_scaler, max_norm: float = 0,
update_freq: int = 1, model_ema: Optional[ModelEma] = None,
log_writer: Optional[utils.TensorboardLogger] = None,
task = None, mixup_fn=None,
):
model.train(True)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
for data_iter_step, data in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
step = data_iter_step // update_freq
global_step = start_steps + step # global training iteration
# Update LR & WD for the first acc
if lr_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[global_step] * param_group["lr_scale"]
# put input data into cuda
for tensor_key in data.keys():
data[tensor_key] = data[tensor_key].to(device, non_blocking=True)
# print("input %s = %s" % (tensor_key, data[tensor_key]))
if loss_scaler is None and tensor_key.startswith("image"):
data[tensor_key] = data[tensor_key].half()
# mixup for imagenet finetuning
if mixup_fn is not None:
data["image"], data["label"] = mixup_fn(data["image"], data["label"])
if task in ["coco_captioning", "nocaps"]:
data["global_step"] = global_step
if loss_scaler is None:
results = handler.train_batch(model, **data)
else:
with torch.cuda.amp.autocast():
results = handler.train_batch(model, **data)
loss = results.pop("loss")
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
if loss_scaler is None:
loss /= update_freq
model.backward(loss)
model.step()
if (data_iter_step + 1) % update_freq == 0:
# model.zero_grad()
# Deepspeed will call step() & model.zero_grad() automatic
if model_ema is not None:
model_ema.update(model)
grad_norm = None
loss_scale_value = utils.get_loss_scale_for_deepspeed(model)
else:
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
kwargs = {
"loss": loss_value,
}
for key in results:
kwargs[key] = results[key]
log_writer.update(head="train", **kwargs)
kwargs = {
"loss_scale": loss_scale_value,
"lr": max_lr,
"min_lr": min_lr,
"weight_decay": weight_decay_value,
"grad_norm": grad_norm,
}
log_writer.update(head="opt", **kwargs)
log_writer.set_step()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, handler):
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
handler.before_eval(metric_logger=metric_logger, data_loader=data_loader)
for data in metric_logger.log_every(data_loader, 10, header):
for tensor_key in data.keys():
data[tensor_key] = data[tensor_key].to(device, non_blocking=True)
with torch.cuda.amp.autocast():
handler.eval_batch(model=model, **data)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
return handler.after_eval()